Summer Special Sale - Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 575363r9

Welcome To DumpsPedia

ANS-C01 Sample Questions Answers

Questions 4

A company deployed an application in two AWS Regions in one AWS account. The company has one VPC in each Region. The VPCs use non-overlapping private CIDR ranges.

The company needs to connect both VPCs to a single on-premises data center to test theapplication. The application requires up to 800 Mbps of throughput. A network engineer needs to establish connectivity between the VPCs and the on-premises data center.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Order a 2 Gbps Direct Connect connection for the data center. Configure a virtual private gateway in each VPC. Create a private VIF for each virtual private gateway, and associate the virtual private gateways with the Direct Connect connection. Configure static routes in the VPC route tables and in the data center router.

B.

Order a 2 Gbps Direct Connect connection for the data center. Configure a virtual private gateway in each VPC. Create a private VIF for each virtual private gateway, and associate the virtual private gateways with the Direct Connect connection. Configure Open Shortest Path First (OSPF) routing between the private VIF and the data center.

C.

Configure a customer gateway and a virtual private gateway in each VPC. Configure an AWS Site-to-Site VPN connection between the data center and each VPC. Configure static routes in each VPC route table to point to the subnets in the data center.

D.

Configure a customer gateway and a virtual private gateway in each VPC. Configure an AWS Site-to-Site VPN connection between the data center and each VPC. Configure BGP routing between the VPCs and the data center.

Buy Now
Questions 5

A company has several AWS Site-to-Site VPN connections between an on-premises customer gateway and a transit gateway. The company's application uses IPv4 to communicate through the VPN connections.

The company has updated the VPC to be dual stack and wants to transition to using IPv6-only for new workloads. When the company tries to communicate through the existing VPN connections, IPv6 traffic fails.

Which solution will provide IPv6 support with the LEAST operational overhead?

Options:

A.

Create a new Site-to-Site VPN connection that supports IPv6.

B.

Create a new Site-to-Site VPN connection to a self-managed Amazon EC2 instance that runs open source software.

C.

Update the existing Site-to-Site VPN connections to support IPv6.

D.

Update the on-premises customer gateway's public IP address from IPv4 to IPv6.

Buy Now
Questions 6

A company has a VPC in the AWS Cloud. The company recently acquired a competitor that also has a VPC in the AWS Cloud. A network engineer discovers an IP address overlap between the two VPCs. Both VPCs require access to an AWS Marketplace partner service.

Which solution will ensure interoperability among the VPC hosted services and the AWS Marketplace partner service?

Options:

A.

Configure VPC peering with static routing between the VPCs. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

B.

Configure a NAT gateway in the VPCs. Configure default routes in each VPC to point to the local NAT gateway. Attach each NAT gateway to a transit gateway. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

C.

Configure AWS PrivateLink to facilitate connectivity between the VPCs and the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

D.

Configure a NAT instance in the VPCs. Configure default routes in each VPC to point to the local NAT instance. Configure an interface endpoint in each VPC to connect to the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

Buy Now
Questions 7

A company has two AWS accounts one for Production and one for Connectivity. A network engineer needs to connect the Production account VPC to a transit gateway in the Connectivity account. The feature to auto accept shared attachments is not enabled on the transit gateway.

Which set of steps should the network engineer follow in each AWS account to meet these requirements?

Options:

A.

1. In the Production account: Create a resource share in AWS Resource Access Manager for the transit gateway. Provide the Connectivity account ID. Enable the feature to allow external accounts

2. In the Connectivity account: Accept the resource.

3. In the Connectivity account: Create an attachment to the VPC subnets.

4. In the Production account: Accept the attachment. Associate a route table with the attachment.

B.

1. In the Production account: Create a resource share in AWS Resource Access Manager for the VPC subnets. Provide the Connectivity account ID. Enable the feature to allow external accounts.

2. In the Connectivity account: Accept the resource.

3. In the Production account: Create an attachment on the transit gateway to the VPC subnets.

4. In the Connectivity account: Accept the attachment. Associate a route table with the a

C.

1. In the Connectivity account: Create a resource share in AWS Resource Access Manager for the VPC subnets. Provide the Production account ID. Enable the feature to allow external accounts.

2. In the Production account: Accept the resource.

3. In the Connectivity account: Create an attachment on the transit gateway to the VPC subnets.

4. In the Production account: Accept the attachment. Associate a route table with the att

D.

1. In the Connectivity account: Create a resource share in AWS Resource Access Manager for the transit gateway. Provide the Production account ID Enable the feature to allow external accounts.

2. In the Production account: Accept the resource.

3. In the Production account: Create an attachment to the VPC subnets.

4. In the Connectivity account: Accept the attachment. Associate a route table with the attachment.

Buy Now
Questions 8

A company has established connectivity between its on-premises data center in Paris, France, and the AWS Cloud by using an AWS Direct Connect connection. The company uses a transit VIF that connects the Direct Connect connection with a transit gateway that is hosted in the Europe (Paris) Region. The company hosts workloads in private subnets in several VPCs that are attached to the transit gateway.

The company recently acquired another corporation that hosts workloads on premises in an office building in Tokyo, Japan. The company needs to migrate the workloads from the Tokyo office to AWS. These workloads must have access to the company's existing workloads in Paris. The company also must establish connectivity between the Tokyo office building and the Paris data center.

In the Asia Pacific (Tokyo) Region, the company creates a new VPC with private subnets for migration of the workloads. The workload migration must be completed in 5 days. The workloads cannot be directly accessible from the internet.

Which set of steps should a network engineer take to meet these requirements?

Options:

A.

1. Create public subnets in the Tokyo VPC to migrate the workloads into.

2. Configure an internet gateway for the Tokyo office to reach the Tokyo VPC.

3. Configure security groups on the Tokyo workloads to only allow traffic from the Tokyo office and the Paris workloads.

4. Create peering connections between the Tokyo VPC and the Paris VPCs.

5. Configure a VPN connection between the Paris data center and the T

B.

1. Configure a transit gateway in the Asia Pacific (Tokyo) Region. Associate this transit gateway with the Tokyo VPC.

2. Create peering connections between the Tokyo transit gateway and the Paris transit gateway.

3. Set up a new Direct Connect connection from the Tokyo office to the Tokyo transit gateway.

4. Configure routing on both transit gateways to allow data to flow between sites and the VPCs.

C.

1. Configure a transit gateway in the Asia Pacific (Tokyo) Region. Associate this transit gateway with the Tokyo VPC.

2. Create peering connections between the Tokyo transit gateway and the Paris transit gateway.

3. Configure an AWS Site-to-Site VPN connection from the Tokyo office. Set the Tokyo transit gateway as the target.

4. Configure routing on both transit gateways to allow data to flow between sites and the

D.

1. Configure an AWS Site-to-Site VPN connection from the Tokyo office to the Paris transitgateway.

2. Create an association between the Paris transit gateway and the Tokyo VPC.

3. Configure routing on the Paris transit gateway to allow data to flow between sites and the VPCs.

Buy Now
Questions 9

A company hosts an application on Amazon EC2 instances behind an Application Load Balancer (ALB). The company recently experienced a network security breach. A network engineer must collect and analyze logs that include the client IP address, target IP address, target port, and user agent of each user that accesses the application.

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Configure the ALB to store logs in an Amazon S3 bucket. Download the files from Amazon S3, and use a spreadsheet application to analyze the logs.

B.

Configure the ALB to push logs to Amazon Kinesis Data Streams. Use Amazon Kinesis Data Analytics to analyze the logs.

C.

Configure Amazon Kinesis Data Streams to stream data from the ALB to Amazon OpenSearch Service (Amazon Elasticsearch Service). Use search operations in Amazon OpenSearch Service (Amazon Elasticsearch Service) to analyze the data.

D.

Configure the ALB to store logs in an Amazon S3 bucket. Use Amazon Athena to analyze the logs in Amazon S3.

Buy Now
Questions 10

A company has a transit gateway in a single AWS account. The company sends flow logs for the transit gateway to an Amazon CloudWatch Logs log group.

The company created an AWS Lambda function to analyze the logs. The Lambda function sends a notification to an Amazon Simple Notification Service (Amazon SNS) topic when a VPC generates traffic that is dropped by the transit gateway. Each notification contains the account ID. VPC ID, and total amount of dropped packets.

The company wants to subscribe a new Lambda function to the SNS topic. The new Lambda function must automatically prevent the traffic that is identified in each notification from leaving a VPC by applying a network ACL to the transit gateway attachment subnets in the VPC that generates the traffic.

Which solution will meet these requirements?

Options:

A.

Configure the existing Lambda function to add the destination IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an outbound rule by using the destination IP addresses in the network ACL.

B.

Configure the existing Lambda function to add the source IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an inbound rule by using the source IP addresses in the network ACL.

C.

Configure the existing Lambda function to add the source IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an outbound rule by using the source IP addresses in the network ACL.

D.

Configure the existing Lambda function to add the destination IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an inbound rule by using the destination IP addresses in the network ACL.

Buy Now
Questions 11

An insurance company is planning the migration of workloads from its on-premises data center to the AWS Cloud. The company requires end-to-end domain name resolution. Bi-directional DNS resolution between AWS and the existing on-premises environments must be established. The workloads will be migrated into multiple VPCs. The workloads also have dependencies on each other, and not all the workloads will be migrated at the same time.

Which solution meets these requirements?

Options:

A.

Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC, and sharethe Route 53 Resolver rules with the application accounts by using AW

B.

Configure a public hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC. and share the Route 53 Resolver rules with the application accounts by using AW

C.

Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPDefine Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPand s

Buy Now
Questions 12

A company has a VPC that includes application workloads that run on Amazon EC2 instances in a single AWS Region. The company wants to use AWS Local Zones to deploy an extension of the application workloads that run in the Region. The extended workloads in the Local Zone need to communicate bidirectionally with the workloads in the VPC in the Region.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create a new VPC in the Local Zone. Attach all the VPCs to a transit gateway. Configure routing for the transit gateway and the VPCs. Deploy instances in the new VPC.

B.

Deploy a third-party appliance in a new VPC in the Region. Create a new VPC in the Local Zone. Create VPN connections to the appliance for the VPCs. Deploy instances in the new VPC in the Local Zone.

C.

Create a new subnet in the Local Zone. Deploy a third-party appliance in the VPC with interfaces in each subnet. Configure the new subnet to route the Local Zone through the appliance. Deploy instances in the new subnet.

D.

Create a new subnet in the Local Zone. Configure the new subnet to use a CIDR block that is within the VPC’s CIDR block. Deploy instances in the new subnet in the Local Zone.

Buy Now
Questions 13

A company has many application VPCs that use AWS Site-to-Site VPN connections for connectivity to an on-premises location. The company's network team wants to gradually migrate to AWS Transit Gateway to provide VPC-to-VPC connectivity.

The network team sets up a transit gateway that uses equal-cost multi-path (ECMP) routing. The network team attaches two temporary VPCs to the transit gateway for testing. The test VPCs contain Amazon EC2 instances to confirm connectivity over the transit gateway between the on-premises location and the VPCs. The network team creates two new Site-to-Site VPN connections to the transit gateway.

During testing, the network team cannot reach the required bandwidth of 2.5 Gbps over the pair of new Site-to-Site VPN connections.

Which combination of steps should the network team take to improve bandwidth performance and minimize network congestion? (Select THREE.)

Options:

A.

Enable acceleration for the existing Site-to-Site VPN connections to the transit gateway.

B.

Create new accelerated Site-to-Site VPN connections to the transit gateway.

C.

Advertise the on-premises prefix to AWS with the same BGP AS_PATH attribute across all the Site-to-Site VPN connections.

D.

Advertise the on-premises prefix to AWS with a different BGP AS_PATH attribute across all the Site-to-Site VPN connections

E.

Verify that the transit gateway attachments are present in the Availability Zones of the test VPC.

F.

Verify that the on-premises location is sending traffic by using multiple flows.

Buy Now
Questions 14

A company is planning to migrate an internal application to the AWS Cloud. The application will run on Amazon EC2 instances in one VPC. Users will access the application from the

company's on-premises data center through AWS VPN or AWS Direct Connect. Users will use private domain names for the application endpoint from a domain name that is reserved

explicitly for use in the AWS Cloud.

Each EC2 instance must have automatic failover to another EC2 instance in the same AWS account and the same VPC. A network engineer must design a DNS solution that will not expose

the application to the internet.

Which solution will meet these requirements?

Options:

A.

Assign public IP addresses to the EC2 instances. Create an Amazon Route 53 private hosted zone for the AWS reserved domain name. Associate the private hosted zone with

the VPC. Create a Route 53 Resolver outbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to

the outbound endpoint IP address for Route 53 Resolver. In the private hosted zone, configure

B.

Place the EC2 instances in private subnets. Create an Amazon Route 53 public hosted zone for the AWS reserved domain name. Associate the public hosted zone with the

VPC. Create a Route 53 Resolver inbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to the

inbound endpoint IP address for Route 53 Resolver. In the public hosted zone, configure primary an

C.

Place the EC2 instances in private subnets. Create an Amazon Route 53 private hosted zone for the AWS reserved domain name. Associate the private hosted zone with the

VPC. Create a Route 53 Resolver inbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to the

inbound endpoint IP address for Route 53 Resolver. In the private hosted zone, configure primary

D.

Place the EC2 instances in private subnets. Create an Amazon Route 53 private hosted zone for the AWS reserved domain name. Associate the private hosted zone with the

VPC. Create a Route 53 Resolver inbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to the

inbound endpoint IP address for Route 53 Resolver. In the private hosted zone, configure primary

Buy Now
Questions 15

A company hosts a highly available, scalable, and resilient application on Amazon EC2 instances that are part of an Auto Scaling group. A network engineer is planning to integrate IPv6 support with the application deployment in phases. The first phase is to enable IPv6 service consumption on the public Network Load Balancers (NLBs) that are deployed across the infrastructure. The target groups for the NLBS are configured as the Auto Scaling groups of the EC2 instances that host the application. The NLBs are configured for dual-stack operation.

During the testing of the first phase, the IPv6 application queries are not reaching the backend servers.

What is the cause of this issue?

Options:

A.

The subnets where the EC2 instances are deployed do not have IPv6 addresses configured.

B.

The route tables for the NLB subnets do not have IPV6 routing configured.

C.

The route tables for the EC2 subnets do not have IPV6 routing configured.

D.

The security groups that are associated with the NLBs do not allow IPv6 traffic.

Buy Now
Questions 16

A company has three VPCs in a single AWS Region. Each VPC contains 15 Amazon EC2 instances, and no connectivity exists between the VPCs.

The company is deploying a new application across all three VPCs. The application requires high bandwidth between the nodes. A network engineer must implement connectivity between the VPCs.

Which solution will meet these requirements with the HIGHEST throughput?

Options:

A.

Configure a transit gateway. Attach each VPC to the transit gateway. Configure static routing in each VPC to route traffic to the transit gateway.

B.

Configure VPC peering between the three VPCs. Configure static routing to route traffic between the three VPCs.

C.

Configure a transit VPC. Configure a VPN gateway in each VPC. Create an AWS Site-to-Site VPN tunnel from each VPC to the transit VPC. Use BGP routing to route traffic between the VPCs and the transit VPC.

D.

Configure AWS Site-to-Site VPN connections between each VPC. Enable route propagation for each Site-to-Site VPN connection to route traffic between the VPCs.

Buy Now
Questions 17

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud.The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

Options:

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Buy Now
Questions 18

A marketing company is using hybrid infrastructure through AWS Direct Connect links and a software-defined wide area network (SD-WAN) overlay to connect its branch offices. The company connects multiple VPCs to a third-party SD-WAN appliance transit VPC within the same account by using AWS Site-to-Site VPNs.

The company is planning to connect more VPCs to the SD-WAN appliance transit VPC. However, the company faces challenges of scalability, route table limitations, and higher costs with the existing architecture. A network engineer must design a solution to resolve these issues and remove dependencies.

Which solution will meet these requirements with the LEAST amount of operational overhead?

Options:

A.

Configure a transit gateway to attach the VPCs. Configure a Site-to-Site VPN connection between the transit gateway and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

B.

Configure a transit gateway to attach the VPCs. Configure a transit gateway Connect attachment for the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

C.

Configure a transit gateway to attach the VPCs. Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

D.

Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

Buy Now
Questions 19

A company is migrating its containerized application to AWS. For the architecture the company will have an ingress VPC with a Network Load Balancer (NLB) to distribute the traffic to front-end pods in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The front end of the application will determine which user is requesting access and will send traffic to 1 of 10 services VPCs. Each services VPC will include an NLB that distributes traffic to the services pods in an EKS cluster.

The company is concerned about overall cost. User traffic will be responsible for more than 10 TB of data transfer from the ingress VPC to services VPCs every month. A network engineer needs to recommend how to design the communication between the VPCs.

Which solution will meet these requirements at the LOWEST cost?

Options:

A.

Create a transit gateway. Peer each VPC to the transit gateway. Use zonal DNS names for the NLB in the services VPCs to minimize cross-AZ traffic from the ingress VPC to the services VPCs.

B.

Create an AWS PrivateLink endpoint in every Availability Zone in the ingress VPC. Each PrivateLink endpoint will point to the zonal DNS entry of the NLB in the services VPCs.

C.

Create a VPC peering connection between the ingress VPC and each of the 10 services VPCs. Use zonal DNS names for the NLB in the services VPCs to minimize cross-AZ traffic from the ingress VPC to the services VPCs.

D.

Create a transit gateway. Peer each VPC to the transit gateway. Turn off cross-AZ load balancing on the transit gateway. Use Regional DNS names for the NLB in the services VPCs.

Buy Now
Questions 20

An education agency is preparing for its annual competition between schools. In the competition, students at schools from around the country solve math problems, complete puzzles, and write essays.

The IP addressing plan of all the schools is well-known and is administered centrally. The competition is hosted in the AWS Cloud and is not publicly available. All competition traffic must be encrypted in transit. Only authorized endpoints can access the competition. All the schools have firewall policies that block ICMP traffic.

A network engineer builds a solution in which all the schools access the competition through AWS Site-to-Site VPN connections. The network engineer uses BGP as the routing protocol. The network engineer must implement a solution that notifies schools when they lose connectivity and need to take action on their premises to address the issue.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Monitor the state of the VPN tunnels by using Amazon CloudWatch. Create a CloudWatch alarm that uses Amazon Simple Notification Service (Amazon SNS) to notifypeople at the affected school if the tunnels are down.

B.

Create a scheduled AWS Lambda function that pings each school's on-premises customer gateway device. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if the ping fails.

C.

Create a scheduled AWS Lambda function that uses the VPC Reachability Analyzer API to verify the connectivity. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

D.

Create an Amazon CloudWatch dashboard for each school to show all CloudWatch metrics for each school's Site-to-Site VPN connection. Share each dashboard with the appropriate school.

E.

Create a scheduled AWS Lambda function to monitor the existence of each school's routes in the VPC route table where VPN routes are propagated. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

Buy Now
Questions 21

A company is using an AWS Site-to-Site VPN connection from the company's on-premises data center to a virtual private gateway in the AWS Cloud Because of congestion, the company is experiencing availability and performance issues as traffic travels across the internet before the traffic reaches AWS. A network engineer must reduce these issues for the connection as quickly as possible with minimum administration effort.

Which solution will meet these requirements?

Options:

A.

Edit the existing Site-to-Site VPN connection by enabling acceleration. Stop and start the VPN service on the customer gateway for the new setting to take effect.

B.

Configure a transit gateway in the same AWS Region as the existing virtual private gateway. Create a new accelerated Site-to-Site VPN connection. Connect the new connection to the transit gateway by using a VPN attachment. Update the customer gateway device to use the new Site to Site VPN connection. Delete the existing Site-to-Site VPN connection

C.

Create a new accelerated Site-to-Site VPN connection. Connect the new Site-to-Site VPN connection to the existing virtual private gateway. Update the customer gateway device to use the new Site-to-Site VPN connection. Delete the existing Site-to-Site VPN connection.

D.

Create a new AWS Direct Connect connection with a private VIF between the on-premises data center and the AWS Cloud. Update the customer gateway device to use the new Direct Connect connection. Delete the existing Site-to-Site VPN connection.

Buy Now
Questions 22

A company is migrating its internet VPN connections to dedicated AWS Direct Connect connections. The company needs to set up the Direct Connect connections so that all network communications are encrypted in transit.

Which combination of steps will meet this requirement? (Choose three.)

Options:

A.

Create new Direct Connect connections while requesting MACsec ports.

B.

Create a MACsec Connectivity Association Key Name (CKN) and Connectivity Association Key (CAK) pair. Associate the pair with each new connection.

C.

Update the on-premises routers to use MACsec and the shared Connectivity Association Key Name (CKN) and Connectivity Association Key (CAK) pair.

D.

Create a shared key for an IPsec connection.

E.

Configure a new Direct Connect gateway. Associate the shared key with the new Direct Connect gateway.

F.

Set up IPsec on the on-premises router. Associate the shared key with the IPsec configuration.

Buy Now
Questions 23

A company has a public application. The application uses an Application Load Balancer (ALB) that has a target group of Amazon EC2 instances.

The company wants to protect the application from security issues in web requests. The traffic to the application must have end-to-end encryption.

Which solution will meet these requirements?

Options:

A.

Configure a Network Load Balancer (NLB) that has a target group of the existing EC2 instances. Configure TLS connections to terminate on the EC2 instances that use a public certificate. Configure an AWS WAF web ACL. Associate the web ACL with the NLB.

B.

Configure TLS connections to terminate at the ALB that uses a public certificate. Configure AWS Certificate Manager (ACM) certificates for the communication between the ALB and the EC2 instances. Configure an AWS WAF web ACL. Associate the web ACL with the ALB.

C.

Configure a Network Load Balancer (NLB) that has a target group of the existing EC2 instances. Configure TLS connections to terminate at the EC2 instances by creating a TLS listener. Configure self-signed certificates on the EC2 instances for the communication between the NLB and the EC2 instances. Configure an AWS WAF web ACL. Associate the web ACL with the NLB.

D.

Configure a third-party certificate on the EC2 instances for the communication between the ALB and the EC2 instances. Import the third-party certificate into AWS Certificate Manager (ACM). Associate the imported certificate with the ALB. Configure TLS connections to terminate at the ALB. Configure an AWS WAF web ACL. Associate the web ACL with the ALB.

Buy Now
Questions 24

A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.

A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.

B.

Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C.

Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

D.

Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.

E.

Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Buy Now
Questions 25

A company is developing a new application that is deployed in multiple VPCs across multiple AWS Regions. The VPCs are connected through AWS Transit Gateway. The VPCs contain private subnets and public subnets.

All outbound internet traffic in the private subnets must be audited and logged. The company's network engineer plans to use AWS Network Firewall and must ensure that all traffic through Network Firewall is completely logged for auditing and alerting.

How should the network engineer configure Network Firewall logging to meet these requirements?

Options:

A.

Configure Network Firewall logging in Amazon CloudWatch to capture all alerts. Send the logs to a log group in Amazon CloudWatch Logs.

B.

Configure Network Firewall logging in Network Firewall to capture all alerts and flow logs.

C.

Configure Network Firewall logging by configuring VPC Flow Logs for the firewall endpoint. Send the logs to a log group in Amazon CloudWatch Logs.

D.

Configure Network Firewall logging by configuring AWS CloudTrail to capture data events.

Buy Now
Questions 26

A company’s network engineer builds and tests network designs for VPCs in a development account. The company needs to monitor the changes that are made to network resources and must ensure strict compliance with network security policies. The company also needs access to the historical configurations of network resources.

Which solution will meet these requirements?

Options:

A.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule with a custom pattern to monitor the account for changes. Configure the rule to invoke an AWS Lambda function to identify noncompliant resources. Update an Amazon DynamoDB table with the changes that are identified.

B.

Create custom metrics from Amazon CloudWatch logs. Use the metrics to invoke an AWS Lambda function to identify noncompliant resources. Update an Amazon DynamoDB table with the changes that are identified.

C.

Record the current state of network resources by using AWS Config. Create rules that reflect the desired configuration settings. Set remediation for noncompliant resources.

D.

Record the current state of network resources by using AWS Systems Manager Inventory. Use Systems Manager State Manager to enforce the desired configuration settings and to carry out remediation for noncompliant resources.

Buy Now
Questions 27

A company has an application that runs on a fleet of Amazon EC2 instances. A new company regulation mandates that all network traffic to and from the EC2 instances must be sent to a centralized third-party EC2 appliance for content inspection.

Which solution will meet these requirements?

Options:

A.

Configure VPC flow logs on each EC2 network Interface. Publish the flow logs to an Amazon S3 bucket. Create a third-party EC2 appliance to acquire flow logs from the S3 bucket. Log in to the appliance to monitor network content.

B.

Create a third-party EC2 appliance in an Auto Scaling group fronted by a Network Load Balancer (NLB). Configure a mirror session. Specify the NLB as the mirror target. Specify a mirror filter to capture inbound and outbound traffic for the source of the mirror session, specify the EC2 elastic network interfaces for all the instances that host the application.

C.

Configure a mirror session. Specify an Amazon Data Firehose delivery stream as the mirror target Specify a mirror filter to capture inbound and outbound traffic. For the source of the mirror session, specify the EC2 elastic network interfaces for all the instances that host the application Create a third-party EC2 appliance. Send all traffic to the appliance through the Firehose delivery stream for content inspection.

D.

Configure VPC flow logs on each EC2 network interface. Send the logs to Amazon CloudWatch. Create a third-party EC2 appliance. Configure a CloudWatch filter to send the flow logs to Amazon Data Firehose to load the logs into the appliance.

Buy Now
Questions 28

A company has hundreds of Amazon EC2 instances that are running in two production VPCs across all Availability Zones in the us-east-1 Region. The production VPCs are named

VPC A and VPC B.

A new security regulation requires all traffic between production VPCs to be inspected before the traffic is routed to its final destination. The company deploys a new shared VPC that

contains a stateful firewall appliance and a transit gateway with a VPC attachment across all VPCs to route traffic between VPC A and VPC B through the firewall appliance for

inspection. During testing, the company notices that the transit gateway is dropping the traffic whenever the traffic is between two Availability Zones.

What should a network engineer do to fix this issue with the LEAST management overhead?

Options:

A.

In the shared VPC, replace the VPC attachment with a VPN attachment. Create a VPN tunnel between the transit gateway and the firewall appliance. Configure BGP.

B.

Enable transit gateway appliance mode on the VPC attachment in VPC A and VPC B.

C.

Enable transit gateway appliance mode on the VPC attachment in the shared VPC.

D.

In the shared VPC, configure one VPC peering connection to VPC A and another VPC peering connection to VPC B.

Buy Now
Questions 29

A network engineer is working on a large migration effort from an on-premises data center to an AWS Control Tower based multi-account environment. The environment

has a transit gateway that is deployed to a central network services account. The central network services account has been shared with an organization in AWS

Organizations through AWS Resource Access Manager (AWS RAM).

A shared services account also exists in the environment. The shared services account hosts workloads that need to be shared with the entire organization.

The network engineer needs to create a solution to automate the deployment of common network components across the environment. The solution must provision a

VPC for application workloads to each new and existing member account. The VPCs must be connected to the transit gateway in the central network services account.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select THREE.)

Options:

A.

Deploy an AWS Lambda function to the shared services account. Program the Lambda function to assume a role in the new and existing member accounts

to provision the necessary network infrastructure.

B.

Update the existing accounts with an Account Factory Customization (AFC). Select the same AFC when provisioning new accounts.

C.

Create an AWS CloudFormation template that describes the infrastructure that needs to be created in each account. Upload the template as an AWS

Service Catalog product to the shared services account.

D.

Deploy an Amazon EventBridge rule on a default event bus in the shared services account. Configure the EventBridge rule to react to AWS Control Tower

CreateManagedAccount lifecycle events and to invoke the AWS Lambda function.

E.

Create an AWSControlTowerBlueprintAccess role in the shared services account.

F.

Create an AWSControlTowerBlueprintAccess role in each member account.

Buy Now
Questions 30

A company has a total of 30 VPCs. Three AWS Regions each contain 10 VPCs. The company has attached the VPCs in each Region to a transit gateway in that Region. The company also

has set up inter-Region peering connections between the transit gateways.

The company wants to use AWS Direct Connect to provide access from its on-premises location for only four VPCs across the three Regions. The company has provisioned four Direct

Connect connections at two Direct Connect locations.

Which combination of steps will meet these requirements MOST cost-effectively? (Select THREE.)

Options:

A.

Create four virtual private gateways. Attach the virtual private gateways to the four VPCs.

B.

Create a Direct Connect gateway. Associate the four virtual private gateways withthe Direct Connect gateway.

C.

Create four transit VIFs on each Direct Connect connection. Associate the transit VIFs with the Direct Connect gateway.

D.

Create four transit VIFs on each Direct Connect connection. Associate the transit VIFs with the four virtual private gateways.

E.

Create four private VIFs on each Direct Connect connection to the Direct Connect gateway.

F.

Create an association between the Direct Connect gateway and the transit gateways.

Buy Now
Questions 31

An application team for a startup company is deploying a new multi-tier application into the AWS Cloud. The application will be hosted on a fleet of Amazon EC2 instances that run in an Auto Scaling group behind a publicly accessible Network Load Balancer (NLB). The application requires the clients to work with UDP traffic and TCP traffic.

In the near term, the application will serve only users within the same geographic location. The application team plans to extend the application to a global audience and will move the deployment to multiple AWS Regions around the world to bring the application closer to the end users. The application team wants to use the new Regions to deploy new versions of the application and wants to be able to control the amount of traffic that each Region receives during these rollouts. In addition, the application team must minimize first-byte latency and jitter (randomized delay) for the end users.

How should the application team design the network architecture for the application to meet these requirements?

Options:

A.

Create an Amazon CloudFront distribution to align to each Regional deployment. Set the NLB for each Region as the origin for each CloudFront distribution. Use an Amazon Route 53 weighted routing policy to control traffic to the newer Regional deployments.

B.

Create an AWS Global Accelerator accelerator and listeners for the required ports. Configure endpoint groups for each Region. Configure a traffic dial for the endpoint groups to control traffic to the newer Regional deployments. Register the NLBs with the endpoint groups.

C.

Use Amazon S3 Transfer Acceleration for the application in each Region. Adjust the amount of traffic that each Region receives from the Transfer Acceleration endpoints to the Regional NLBs.

D.

Create an Amazon CloudFront distribution that includes an origin group. Set the NLB for each Region as the origins for the origin group. Use an Amazon Route 53 latency routing policy to control traffic to the new Regional deployments.

Buy Now
Questions 32

A network engineer needs to design the architecture for a high performance computing (HPC) workload. Amazon EC2 instances will require 10 Gbps flows and an aggregate throughput of up to 100 Gbps across many instances with low-latency communication.

Which architecture solution will optimize this workload?

Options:

A.

Place nodes in a single subnet of a VPC. Configure a cluster placement group. Ensure that the latest Elastic Fabric Adapter (EFA) drivers are installed on the EC2 instances with a supported operating system.

B.

Place nodes in multiple subnets in a single VPC. Configure a spread placement group Ensure that the EC2 instances support Elastic Network Adapters (ENAs) and that the drivers are updated on each instance operating system.

C.

Place nodes in multiple VPCs. Use AWS Transit Gateway to route traffic between theVPCs. Ensure that the latest Elastic Fabric Adapter (EFA) drivers are installed on the EC2 instances with a supported operating system.

D.

Place nodes in multiple subnets in multiple Availability Zones. Configure a cluster placement group. Ensure that the EC2 instances support Elastic Network Adapters (ENAs) and that the drivers are updated on each instance operating system.

Buy Now
Questions 33

A banking company is successfully operating its public mobile banking stack on AWS. The mobile banking stack is deployed in a VPC that includes private subnets and public subnets. The company is using IPv4 networking and has not deployed or supported IPv6 in the environment. The company has decided to adopt a third-party service provider's API and must integrate the API with the existing environment. The service provider’s API requires the use of IPv6.

A network engineer must turn on IPv6 connectivity for the existing workload that is deployed in a private subnet. The company does not want to permit IPv6 traffic from the public internet and mandates that the company's servers must initiate all IPv6 connectivity. The network engineer turns on IPv6 in the VPC and in the private subnets.

Which solution will meet these requirements?

Options:

A.

Create an internet gateway and a NAT gateway in the VPC. Add a route to the existing subnet route tables to point IPv6 traffic to the NAT gateway.

B.

Create an internet gateway and a NAT instance in the VPC. Add a route to the existing subnetroute tables to point IPv6 traffic to the NAT instance.

C.

Create an egress-only Internet gateway in the VPAdd a route to the existing subnet route tables to point IPv6 traffic to the egress-only internet gateway.

D.

Create an egress-only internet gateway in the VPC. Configure a security group that denies all inbound traffic. Associate the security group with the egress-only internet gateway.

Buy Now
Questions 34

A global company is establishing network connections between the company's primary and secondary data centers and a VPC. A network engineer needs to maximize resiliency and fault tolerance for the connections. The network bandwidth must be greater than 10 Gbps.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Set up a 100 Gbps connection at the primary data center that terminates at an AWS Direct Connect location. Set up a second 100 Gbps connection at the secondary data center that terminates at a second Direct Connect location. Ensure the connections aremanaged by separate providers.

B.

Set up a 10 Gbps connection at the primary data center that terminates at an AWS Direct Connect location. Set up a second 10 Gbps connection at the secondary data center that terminates at a second Direct Connect location. Ensure the connections are managed by separate providers.

C.

Set up two 10 Gbps connections at the primary data center that terminate at one AWS Direct Connect location. Ensure the connections are managed by separate providers. Set up two 10 Gbps connections at the secondary data center that terminate at a second Direct Connect location. Ensure the connections are managed by separate providers.

D.

Set up a 10 Gbps connection at the primary data center that terminates at an AWS Direct Connect location. Set up an AWS Site-to-Site VPN connection at the secondary data center that terminates at a virtual private gateway in the same Region as the company’s VPC.

Buy Now
Questions 35

A company is establishing hybrid cloud connectivity from an on-premises environment to AWS in the us-east-1 Region. The company is using a 10 Gbps AWS Direct Connect dedicated connection. The company has two accounts in AWS. Account A has transit gateways in four AWS Regions. Account В has transit gateways in three Regions. The company does not plan to expand.

To meet security requirements the company's accounts must have separate cloud infrastructure.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create one Direct Connect gateway in us-east-1. Use AWS Resource Access Manager (AWS RAM) to share the Direct Connect gateway with each account. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway. Create a transit VIF for Account B. Associate the three transit gateways inAccount В to the Direct Connect gateway.

B.

Create one Direct Connect gateway in us-east-1 for Account A. Create a second Direct Connect gateway in us-east-1 for Account B. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway in Account A. Create a transit VIF for Account B. Associate the three transit gateways in Account В to the Direct Connect gateway in Account В.

C.

Create one Direct Connect gateway in us-east-1. Use AWS Resource Access Manager (AWS RAM) to share the Direct Connect gateway with each account. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway. Order a new 10 Gbps Direct Connect dedicated connection for Account B. Create a transit VIF on the new Direct Connect connection for Account B. Associate the three transit gateways in

D.

Create one Direct Connect gateway in us-east-1 for Account A. Create a second Direct Connect gateway in us-east-1 for Account B. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway in Account A. Order a new 10 Gbps Direct Connect dedicated connection for Account В. Create a transit VIF on the new Direct Connect connection for Account В. Associate the three transit gateways in Ac

Buy Now
Questions 36

A software-as-a-service (SaaS) company is migrating its private SaaS application to AWS. The company has hundreds of customers that connect to multiple data centers by using VPN tunnels. As the number of customers has grown, the company has experienced more difficulty in its effort to manage routing and segmentation of customers with complex NAT rules.

After the migration to AWS is complete, the company's AWS customers must be able to access the SaaS application directly from their VPCs. Meanwhile, the company's on-premises customers still must be able to connect through IPsec encrypted tunnels.

Which solution will meet these requirements?

Options:

A.

Connect the AWS customer VPCs to a shared transit gateway. Use AWS Site-to-Site VPN connections to the transit gateway for the on-premises customers

B.

Use AWS PrivateLink to connect the AWS customers. Use a third-party routing appliance in the SaaS application VPC to terminate onpremises Site-to-Site VPN connections.

C.

Peer each AWS customer's VPCs to the VPC that hosts the SaaS application. Create AWS Site-to-Site VPN connections on the SaaS VPC virtual private gateway.

D.

Use Site-to-Site VPN tunnels to connect each AWS customer's VPCs to the VPC that hosts the SaaS application. Use AWS Site-to-Site VPN to connect the on-premises customers.

Buy Now
Questions 37

A company is running multiple workloads on Amazon EC2 instances in public subnets. In a recent incident, an attacker exploited an application vulnerability on one of the EC2 instances to gain access to the instance. The company fixed the application and launched a replacement EC2 instance that contains the updated application.

The attacker used the compromised application to spread malware over the internet. The company became aware of the compromise through a notification from AWS. The company needs the ability to identify when an application that is deployed on an EC2 instance is spreading malware.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Use Amazon GuardDuty to analyze traffic patterns by inspecting DNS requests and VPC flow logs.

B.

Use Amazon GuardDuty to deploy AWS managed decoy systems that are equipped with the most recent malware signatures.

C.

Set up a Gateway Load Balancer. Run an intrusion detection system (IDS) appliance from AWS Marketplace on Amazon EC2 for traffic inspection.

D.

Configure Amazon Inspector to perform deep packet inspection of outgoing traffic.

Buy Now
Questions 38

A company is deploying a new application in the AWS Cloud. The company wants a highly available web server that will sit behind an Elastic Load Balancer. The load balancer will route requests to multiple target groups based on the URL in the request. All traffic must use HTTPS. TLS processing must be offloaded to the load balancer. The web server must know the user’s IP address so that the company can keep accurate logs for security purposes.

Which solution will meet these requirements?

Options:

A.

Deploy an Application Load Balancer with an HTTPS listener. Use path-based routing rules to forward the traffic to the correct target group. Include the X-Forwarded-For request header with traffic to the targets.

B.

Deploy an Application Load Balancer with an HTTPS listener for each domain. Use host-based routing rules to forward the traffic to the correct target group for each domain. Include the X-Forwarded-For request header with traffic to the targets.

C.

Deploy a Network Load Balancer with a TLS listener. Use path-based routing rules to forward the traffic to the correct target group. Configure client IP address preservation for traffic to the targets.

D.

Deploy a Network Load Balancer with a TLS listener for each domain. Use host-based routing rules to forward the traffic to the correct target group for each domain. Configure client IP address preservation for traffic to the targets.

Buy Now
Questions 39

A real estate company is building an internal application so that real estate agents can upload photos and videos of various properties. The application will store these photos and videos in an Amazon S3 bucket as objects and will use Amazon DynamoDB to store corresponding metadata. The S3 bucket will be configured to publish all PUT events for new object uploads to an Amazon Simple Queue Service (Amazon SQS) queue.

A compute cluster of Amazon EC2 instances will poll the SQS queue to find out about newly uploaded objects. The cluster will retrieve new objects, perform proprietary image and video recognition and classification update metadata in DynamoDB and replace the objects with new watermarked objects. The company does not want public IP addresses on the EC2 instances.

Which networking design solution will meet these requirements MOST cost-effectively as application usage increases?

Options:

A.

Place the EC2 instances in a public subnet. Disable the Auto-assign Public IP option while launching the EC2 instances. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway.

B.

Place the EC2 instances in a private subnet. Create a NAT gateway in a public subnet in the same Availability Zone. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway

C.

Place the EC2 instances in a private subnet. Create an interface VPC endpoint for Amazon SQS.Create gateway VPC endpoints for Amazon S3 and DynamoDB.

D.

Place the EC2 instances in a private subnet. Create a gateway VPC endpoint for Amazon SQS. Create interface VPC endpoints for Amazon S3 and DynamoDB.

Buy Now
Questions 40

A company runs a workload in a single VPC on AWS. The company’s architecture contains several interface VPC endpoints for AWS services, including Amazon CloudWatch Logs and AWS Key Management Service (AWS KMS). The endpoints are configured to use a shared security group. The security group is not used for any other workloads or resources.

After a security review of the environment, the company determined that the shared security group is more permissive than necessary. The company wants to make the rules associated with the security group more restrictive. The changes to the security group rules must not prevent the resources in the VPC from using AWS services through interface VPC endpoints. The changes must prevent unnecessary access.

The security group currently uses the following rules:

• Inbound - Rule 1

Protocol: TCP

Port: 443

Source: 0.0.0.0/0

• Inbound - Rule 2

Protocol: TCP

Port: 443

Source: VPC CIDR

• Outbound - Rule 1

Protocol: All

Port: All

Destination: 0.0.0.0/0

Which rule or rules should the company remove to meet with these requirements?

Options:

A.

Outbound - Rule 2

B.

Inbound - Rule 1 and Outbound - Rule 1

C.

Inbound - Rule 2 and Outbound - Rule 1

D.

Outbound - Rule 1

Buy Now
Questions 41

A company has an application VPC and a networking VPC that are connected through VPC peering. The networking VPC contains a Network Load Balancer (NLB). The application VPC contains Amazon EC2 instances that run an application. The EC2 instances are part of a target group that is associated with the NLB in the networking VPC.

The company configures a third VPC and peers it to the networking VPC. The new VPC contains a new version of the existing application. The new version of the application runs on new EC2 instances in an application subnet. The new version of the application runs in a different Availability Zone than that original version of the application.

The company needs to establish connectivity between the NLB and the new version of the application.

Which combination of steps will meet this requirement? (Choose three.)

Options:

A.

Register the new application EC2 instances with the NLB by using the instance IDs.

B.

Register the new application EC2 instances with the NLB by using instance IP addresses.

C.

Configure the NLB in the Availability Zone where the new application EC2 instances run.

D.

Configure the NLB to use zonal shift.

E.

Configure the network ACL for the application subnet in the new VPC to allow outbound connections.

F.

Configure the network ACL for the application subnet in the new VPC to allow inbound connections and outbound connections.

Buy Now
Questions 42

A company delivers applications over the internet. An Amazon Route 53 public hosted zone is the authoritative DNS service for the company and its internet applications, all of which are offered from the same domain name.

A network engineer is working on a new version of one of the applications. All the application's components are hosted in the AWS Cloud. The application has a three-tier design. The front end is delivered through Amazon EC2 instances that are deployed in public subnets with Elastic IP addresses assigned. The backend components are deployed in private subnets from RFC1918.

Components of the application need to be able to access other components of the application within the application's VPC by using the same host names as the host names that are used over the public internet. The network engineer also needs to accommodate future DNS changes, such as the introduction of new host names or the retirement of DNS entries.

Which combination of steps will meet these requirements? (Choose three.)

Options:

A.

Add a geoproximity routing policy in Route 53.

B.

Create a Route 53 private hosted zone for the same domain name Associate the application’s VPC with the new private hosted zone.

C.

Enable DNS hostnames for the application's VPC.

D.

Create entries in the private hosted zone for each name in the public hosted zone by using the corresponding private IP addresses.

E.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule that runs when AWSCloudTrail logs a Route 53 API call to the public hosted zone. Create an AWS Lambda function as the target of the rule. Configure the function to use the event information to update the private hosted zone.

F.

Add the private IP addresses in the existing Route 53 public hosted zone.

Buy Now
Questions 43

A company is deploying a web application into two AWS Regions. The company has one VPC in each Region. Each VPC has three Amazon EC2 instances as web servers behind an Application Load Balancer (ALB). The company already has configured an Amazon Route 53 public hosted zone for example.com. Users will access the application by using the fully qualified domain name (FQDN) of app.example.com.

The company needs a DNS solution that allows global users to access the application. The solution must route the users' requests to the Region that provides the lowest response time. The solution must fail over to the Region that provides the next-lowest response time if the application is unavailable in the initially intended Region.

Which solution will meet these requirements?

Options:

A.

For each ALB, create an A record that has a geolocation routing policy to route app.example.com to the IP addresses of the ALB. Configure a Route 53 HTTP health check that monitors each ALB by IP address. Associate the health check with the A records.

B.

Create an A record that has a geolocation routing policy to route app.example.com to the IP addresses for both ALBs. Configure a Route 53 health check that monitors TCP port 80 for each ALB by IP address. Associate the health check with the A records.

C.

Create an A record that has a latency-based routing policy to route app.example.com as an alias to one of the ALBs. Configure a Route 53 health check that monitors TCP port 80 for each ALB by IP address. Associate the health check with the A records.

D.

For each ALB, create an A record that has a latency-based routing policy to route app.example.com as an alias to the ALB. Set the value for Evaluate Target Health to Yes for the records.

Buy Now
Questions 44

A company securely connects resources that are in its VPC to a software as a service (SaaS) solution from a SaaS provider. The SaaS solution is hosted in the AWS Cloud and is powered by AWS PrivateLink. The company uses a PrivateLink endpoint to access the SaaS solution behind the SaaS provider's Network Load Balancer (NLB).

The company recently added a new Availability Zone and new subnets to its VPC. A network engineer is unable to deploy a new interface VPC endpoint for the SaaS solution in the new Availability Zone.

What is the cause of this problem?

Options:

A.

The CIDR block of the new subnets conflicts with the SaaS provider's CIDR block.

B.

The enableDnsHostnames attribute and enableDnsSupport attribute were not configured on the new subnets in the new Availability Zone.

C.

The SaaS provider does not offer the solution in the new Availability Zone and has not configured cross-zone load balancing for the NLB.

D.

The new subnets are missing a route to the VPC internet gateway.

Buy Now
Questions 45

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

Options:

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Buy Now
Questions 46

A company is running a hybrid cloud environment. The company has multiple AWS accounts as part of an organization in AWS Organizations. The company needs a solution to manage a list of IPv4 on-premises hosts that will be allowed to access resources in AWS. The solution must provide version control for the list of IPv4 addresses and must make the list available to the AWS accounts in the organization.

Which solution will meet these requirements?

Options:

A.

Create a customer-managed prefix list. Add entries for the initial list of on-premises IPv4 hosts. Create a resource share in AWS Resource Access Manager. Add the managed prefix list to the resource share. Share the resource with the organization.

B.

Create a customer-managed prefix list. Add entries for the initial list of on-premises IPv4 hosts. Use AWS Firewall Manager to share the managed prefix list with the organization.

C.

Create a security group. Add inbound rule entries for the initial list of on-premises IPv4 hosts. Create a resource share in AWS Resource Access Manager. Add the security group to the resource share. Share the resource with the organization.

D.

Create an Amazon DynamoDB table. Add entries for the initial list of on-premises IPv4 hosts. Create an AWS Lambda function that assumes a role in each AWS account in the organization to authorize inbound rules on security groups based on entries from the DynamoDB table.

Buy Now
Questions 47

An organization is replacing a tape backup system with a storage gateway. there is currently no connectivity to AWS. Initial testing is needed.

What connection option should the organization use to get up and running at minimal cost?

Options:

A.

Use an internet connection.

B.

Set up an AWS VPN connection.

C.

Provision an AWS Direct Connection private virtual interface.

D.

Provision a Direct Connect public virtual interface.

Buy Now
Questions 48

A company has users who work from home. The company wants to move these users to Amazon WorkSpaces for additional security visibility.

The company has deployed WorkSpaces in its own AWS account in VPC A. A network engineer decides to provide the security visibility by using two firewall appliances behind a Gateway Load Balancer (GWLB). The network engineer provisions another VPC, VPC B, in a separate account and deploys the two firewall appliances in separate Availability Zones.

What should the network engineer do to configure the network connectivity for this solution?

Options:

A.

Create a GWLB in VPC A with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the WorkSpaces account to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point the default route to the VPC endpoint.

B.

Create a GWLB in VPC B with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the WorkSpaces account to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point the default route to the GWLB endpoint.

C.

Create a GWLB in VPC B with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the WorkSpaces account to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point the WorkSpaces subnet to the VPC endpoint.

D.

Create a GWLB in VPC B with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the account that contains the firewall appliances to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point thedefault route t

Buy Now
Questions 49

A company has business operations in the United States and in Europe. The company's public applications are running on AWS and use three transit gateways. The transit gateways are located in the us-west-2. us-east-1. and eu-central-1 Regions. All the transit gateways are connected to each other in a full mesh configuration.

The company accidentally removes the route to the eu-central-1 VPCs from the us-west-2 transit gateway route table. The company also accidentally removes the route to the us-west-2 VPCs from the eu-central-1 transit gateway route table.

How can a network engineer identify the misconfiguration with the LEAST operational overhead?

Options:

A.

Use the Route Analyzer feature for AWS Transit Gateway Network Manager

B.

Use the AWSSupport-SetuplPMonitoringFromVPC AWS Systems Manager Automation runbook. Push network telemetry data to Amazon CloudWatch Logs for analysis.

C.

Use VPC flow togs in eu-central-1 and us-west-2 to analyze the missing routes.

D.

Use Amazon VPC Traffic Mirroring in eu-central-1 or us-west-2 to take packet captures and troubleshoot the connectivity issues.

Buy Now
Questions 50

A company has AWS accounts in an organization in AWS Organizations. The company has implemented Amazon VPC IP Address Manager (IPAM)in its networking AWS account. The company is using AWS Resource Access Manager (AWS RAM) to share IPAM pools with other AWS accounts. The company has created a top-level pool with a CIDR block of 10.0.0.0/8. For each AWS account, the company has created an IPAM pool within the top-level pool.

A network engineer needs to implement a solution to ensure that users in each AWS account cannot create new VPCs. The solution also must prevent users from associating a CIDR block with existing VPCs unless the CIDR block is from the IPAM pool for that account.

Which solution will meet these requirements?

Options:

A.

Create a new AWS Config rule to find all VPCs that are not configured to allocate their CIDR block from an IPAM pool. Invoke an AWS Lambda function to delete these VPCs.

B.

Create a new SCP in Organizations. Add a condition that denies the CreateVpc and AssociateVpcCidrBlock Amazon EC2 actions if the lpv4lpamPoolld context key value is not the ID of an IPAM pool.

C.

Create an AWS Lambda function to check for and delete all VPCs that are not configured to allocate their CIDR block from an IPAM pool. Invoke the Lambda function at regular intervals.

D.

Create an Amazon EventBridge rule to check for AWS CloudTrail events for the CreateVpc and AssociateVpcCidrBlock Amazon EC2 actions. Use the rule to invoke an AWS Lambda function to delete all VPCs that are not configured to allocate their CIDR block from an IPAM pool.

Buy Now
Questions 51

A network engineer is designing the architecture for a healthcare company's workload that is moving to the AWS Cloud. All data to and from the on-premises environment must be encrypted in transit. All traffic also must be inspected in the cloud before the traffic is allowed to leave the cloud and travel to the on-premises environment or to the internet.

The company will expose components of the workload to the internet so that patients can reserve appointments. The architecture must secure these components and protect them against DDoS attacks. The architecture also must provide protection against financial liability for services that scale out during a DDoS event.

Which combination of steps should the network engineer take to meet all these requirements for the workload? (Choose three.)

Options:

A.

Use Traffic Mirroring to copy all traffic to a fleet of traffic capture appliances.

B.

Set up AWS WAF on all network components.

C.

Configure an AWS Lambda function to create Deny rules in security groups to block malicious IP addresses.

D.

Use AWS Direct Connect with MACsec support for connectivity to the cloud.

E.

Use Gateway Load Balancers to insert third-party firewalls for inline traffic inspection.

F.

Configure AWS Shield Advanced and ensure that it is configured on all public assets.

Buy Now
Questions 52

A company has a VPC that hosts Amazon EC2 instances in a private subnet. The EC2 Instances use a NAT gateway and an internet gateway for internet connectivity to retrieve data from specific internet websites. The company wants to use AWS Network Firewall to filter outbound traffic.

What should a network engineer do to meet these requirements?

Options:

A.

1. Create a firewall in the NAT gateway subnet.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

3. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the firewall endpoint.

4. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

B.

1. Create a firewall in a new subnet.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of0.0.0.0/0 to the firewall endpoint.

3. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

4. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

C.

1. Create a firewall in the subnet of the EC2 instances.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the firewall endpoint.

3. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

4. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

D.

1. Create a firewall in a new subnet.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

3. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the firewall endpoint.

4. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

Buy Now
Questions 53

A company's AWS infrastructure is spread across more than 50 accounts and across five AWS Regions. The company needs to manage its security posture with simplified administration and maintenance for all the AWS accounts. The company wants to use AWS Firewall Manager to manage the firewall rules and requirements.

The company creates an organization with all features enabled in AWS Organizations.

Which combination of steps should the company take next to meet the requirements? (Select THREE.)

Options:

A.

Configure only the Firewall Manager administrator account to join the organization.

B.

Configure all the accounts to join the organization.

C.

Set an account as the Firewall Manager administrator account.

D.

Set an account as the Firewall Manager child account.

E.

Set up AWS Config for all the accounts and all the Regions where the company has resources.

F.

Set up AWS Config for only the organization's management account.

Buy Now
Questions 54

A company is deploying a new application on AWS. The application uses dynamic multicasting. The company has five VPCs that are all attached to a transit gateway Amazon EC2 instances in each VPC need to be able to register dynamically to receive a multicast transmission.

How should a network engineer configure the AWS resources to meet these requirements?

Options:

A.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

B.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

C.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

D.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

Buy Now
Questions 55

A company’s data center is connected to a single AWS Region by an AWS Direct Connect dedicated connection. The company has a single VPC in the Region. The company stores logs for all its applications locally in the data center.

The company must keep all application logs for 7 years. The company decides to copy all application logs to an Amazon S3 bucket.

Which solution will meet these requirements?

Options:

A.

Create a public VIF on the Direct Connect connection. Create an Amazon S3 gateway endpoint in the VPC.

B.

Create a private VIF on the Direct Connect connection. Create an Amazon S3 gateway endpoint in the VPC.

C.

Create a private VIF on the Direct Connect connection. Create an Amazon S3 interface endpoint in the VPC.

D.

Create a public VIF on the Direct Connect connection. Create an Amazon S3 interface endpoint in the VPC.

Buy Now
Questions 56

A company's AWS architecture consists of several VPCs. The VPCs include a shared services VPC and several application VPCs. The company has established network connectivity from all VPCs to the on-premises DNS servers.

Applications that are deployed in the application VPCs must be able to resolve DNS for internally hosted domains on premises. The applications also must be able to resolve local VPC domain names and domains that are hosted in Amazon Route 53 private hosted zones.

What should a network engineer do to meet these requirements?

Options:

A.

Create a new Route 53 Resolver inbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC. Update each application VPC's DHCP configuration to point DNS resolution to the new Resolver endpoint.

B.

Create a new Route 53 Resolver outbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC.

C.

Create a new Route 53 Resolver outbound endpoint in the shared services VPCreate forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPUpdate each application VPC's DHCP configuration to point DNS resolution to the new Resolver endpoint.

D.

Create a new Route 53 Resolver inbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC.

Buy Now
Questions 57

A company has 10 Amazon EC2 instances that run web server software in a production VPC. The company also has 10 web servers that run in an on-premises data center. The company has a 10 Gbps AWS Direct Connect connection between the on-premises data center and the production VPC. The data center uses the 10.100.0.0/20 CIDR block.

The company needs to implement a load balancing solution that receives HTTPS traffic from thousands of external users. The solution must distribute the traffic across the web servers on AWS and the web servers in the data center. Regardless of the location of the web servers, HTTPS requests must go to the same web server for the duration of the session.

Which solution will meet these requirements?

Options:

A.

Deploy a Network Load Balancer (NLB) in the production VPC. Create one target group for the EC2 Instances and a second target group for the on-premises servers. Specify IP as the target type. Register the EC2 instances and the on-premises servers with the target groups. Enable connection draining on the NLB.

B.

Deploy an Application Load Balancer (ALB) in the production VPC. Create one target group for the EC2 Instances and a second target group for the on-premises servers. Specify IP as the target type. Register the EC2 instances and the on-premises servers with the target groups. Enable application-based sticky sessions on the ALB.

C.

Deploy a Network Load Balancer (NLB) in the production VPC. Create one target group for the EC2 Instances and a second target group for the on-premises servers. Specify instance as the target type. Register the EC2 instances and the on-premises servers with the target groups. Enable sticky sessions on the NLB.

D.

Deploy an Application Load Balancer (ALB) in the production VPC. Create one target group for the EC2 Instances and a second target group for the on-premises servers. Specify instance as the target type. Register the EC2 instances and the on-premises servers with the target groups. Enable application-based sticky sessions on the ALB.

Buy Now
Questions 58

A network engineer needs to standardize a company's approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spokemodel. The company's network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.

What should the network engineer do to meet these requirements?

Options:

A.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

B.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.

C.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.

D.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Buy Now
Questions 59

A government contractor is designing a multi-account environment with multiple VPCs for a customer. A network security policy requires all traffic between any two VPCs to be transparently inspected by a third-party appliance.

The customer wants a solution that features AWS Transit Gateway. The setup must be highly available across multiple Availability Zones, and the solution needs to support automated failover. Furthermore, asymmetric routing is not supported by the inspection appliances.

Which combination of steps is part of a solution that meets these requirements? (Choose two.)

Options:

A.

Deploy two clusters that consist of multiple appliances across multiple Availability Zones in a designated inspection VPC. Connect the inspection VPC to the transit gateway by using a VPC attachment. Create a target group, and register the appliances with the target group. Create a Network Load Balancer (NLB), and set it up to forward to the newly created target group. Configure a default route in the inspection VPCs transit gateway subnet

B.

Deploy two clusters that consist of multiple appliances across multiple Availability Zones in a designated inspection VPC. Connect the inspection VPC to the transit gateway by using a VPC attachment. Create a target group, and register the appliances with the target group. Create a Gateway Load Balancer, and set it up to forward to the newly created target group. Configure a default route in the inspection VPC’s transit gateway subnet towar

C.

Configure two route tables on the transit gateway. Associate one route table with all the attachments of the application VPCs. Associate the other route table with the inspection VPC’s attachment. Propagate all VPC attachments into the inspection route table. Define a static default route in the application route table. Enable appliance mode on the attachment that connects the inspection VPC.

D.

Configure two route tables on the transit gateway. Associate one route table with all the attachments of the application VPCs. Associate the other route table with the inspection VPCs attachment. Propagate all VPC attachments into the application route table. Define a static default route in the inspection route table. Enable appliance mode on the attachment that connects the inspection VPC.

E.

Configure one route table on the transit gateway. Associate the route table with all the VPCs. Propagate all VPC attachments into the route table. Define a static default route in the route table.

Buy Now
Questions 60

A company's existing AWS environment contains public application servers that run on Amazon EC2 instances. The application servers run in a VPC subnet. Each server is associated with an Elastic IP address.

The company has a new requirement for firewall inspection of all traffic from the internet before the traffic reaches any EC2 instances. A security engineer has deployed and configured a Gateway Load Balancer (GLB) in a standalone VPC with a fleet of third-party firewalls.

How should a network engineer update the environment to ensure that the traffic travels across the fleet of firewalls?

Options:

A.

Deploy a transit gateway. Attach a GLB endpoint to the transit gateway. Attach the application VPC to the transit gateway. Update the application subnet route table's default route destination to be the GLB endpoint. Ensure that the EC2 instances' security group allows traffic from the GLB endpoint.

B.

Update the application subnet route table to have a default route to the GLB. On the standalone VPC that contains the firewall fleet, add a route in the route table for the application VPC's CIDR block with the GLB endpoint as the destination. Update the EC2 instances' security group to allow traffic from the GLB.

C.

Provision a GLB endpoint in the application VPC in a new subnet. Create a gateway route table with a route that specifies the application subnet CIDR block as the destination and the GLB endpoint as the target. Associate the gateway route table with the internet gateway in the application VPC. Update the application subnet route table's default route destination to be the GLB endpoint.

D.

Instruct the security engineer to move the GLB into the application VPC. Create a gateway route table. Associate the gateway route table with the application subnet. Add a default route to the gateway route table with the GLB as its destination. Update the route table on the GLB to direct traffic from the internet gateway to the application servers. Ensure that the EC2 instances' security group allows traffic from the GLB.

Buy Now
Questions 61

A company is hosting an application on Amazon EC2 instances behind an Application Load Balancer. The instances are in an Amazon EC2 Auto Scaling group. Because of a recent change to a security group, external users cannot access the application.

A network engineer needs to prevent this downtime from happening again. The network engineer must implement a solution that remediates noncompliant changes to security groups.

Which solution will meet these requirements?

Options:

A.

Configure Amazon GuardDuty to detect inconsistencies between the desired security group configuration and the current security group configuration. Create an AWS Systems Manager Automation runbook to remediate noncompliant security groups.

B.

Configure an AWS Config rule to detect inconsistencies between the desired security group configuration and the current security group configuration. Configure AWS OpsWorks for Chef to remediate noncompliant security groups.

C.

Configure Amazon GuardDuty to detect inconsistencies between the desired security group configuration and the current security group configuration. Configure AWS OpsWorks for Chef to remediate noncompliant security groups.

D.

Configure an AWS Config rule to detect inconsistencies between the desired security group configuration and the current security group configuration. Create an AWS Systems Manager Automation runbook to remediate noncompliant security groups.

Buy Now
Questions 62

A company has developed a web service for language translation. The web service's application runs on a fleet of Amazon EC2 instances that are in an Auto Scaling group. The instances run behind an Application Load Balancer (ALB) and are deployed in a private subnet. The web service can process requests that contain hundreds of megabytes of data.

The company needs to give some customers the ability to access the web service. Each customer has its own AWS account. The company must make the web service accessible to approved customers without making the web service accessible to all customers.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Choose two.)

Options:

A.

Create VPC peering connections with the approved customers only.

B.

Create an AWS PrivateLink endpoint service. Configure the endpoint service to require acceptance that will be granted to approved customers only.

C.

Configure an authentication action for the endpoint service's load balancer to allow customers to log in by using their AWS credentials. Provide only approved customers with the URL.

D.

Configure a Network Load Balancer (NLB) and a listener with the ALB as a target. Associate the NLB with the endpoint service.

E.

Associate the ALB with the endpoint service.

Buy Now
Questions 63

A company hosts application servers on premises and on Amazon EC2 instances in a VPC. The application servers access data that is hosted in an Amazon S3 bucket through the public internet. The EC2 instances in the VPC use an AWS Site-to-Site VPN for connectivity with the on-premises application servers.

New company regulations state that all traffic between the application servers and the S3 bucket must remain private and must not use public IP addresses.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Configure an S3 gateway endpoint Modify the route table with the appropriate route for the endpoint. Access the S3 bucket through the gateway endpoint from the EC2 instances.

B.

Configure an S3 interface endpoint. Update the on-premises servers and EC2 instances to use the interface endpoint DNS name to access the S3 bucket.

C.

Configure an S3 interface endpoint. Update the on-premises servers to use the interface endpoint DNS name to access the S3 bucket. Configure an S3 gateway endpoint. Modify the route table so that the EC2 instances use the gateway endpoint.

D.

Configure an S3 gateway endpoint. Modify the route table with the appropriate route for the endpoint. Use an S3 bucket policy to restrict access to the gateway endpoint. Configure a proxy server fleet behind a Network Load Balancer in the VPC so that the on-premises servers can access the S3 bucket.

Buy Now
Questions 64

A media company is planning to host an event that the company will live stream to users. The company wants to use Amazon CloudFront.

A network engineer creates a primary origin and a secondary origin for CloudFront. Theengineer needs to ensure that the primary origin can fail over to the secondary origin within 15 seconds if a disruption occurs.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Configure a Lambda@Edge function to check the health status of both origins every 10 seconds. Reroute incoming requests when the origin health status is unhealthy.

B.

Create a Network Load Balancer (NLB) in front of both origins Configure the NLB as the origin in CloudFront.

C.

Set the CloudFront origin connection timeout value to 5 seconds Set the origin connection attempts value to 2.

D.

Configure a Lambda@Edge function to monitor incoming requests for an origin response. Reroute incoming requests if no response is received from the primary origin within 10 seconds.

Buy Now
Questions 65

A company hosts a web application that runs on a fleet of Amazon EC2 instances behind an Application Load Balancer (ALB). The instances are in an Auto Scaling group. The company uses an Amazon CloudFront distribution with the ALB as an origin.

The application recently experienced an attack. In response, the company associated an AWS WAF web ACL with the CloudFront distribution. The company needs to use Amazon Athena to analyze application attacks that AWS WAF detects.

Which solution will meet this requirement?

Options:

A.

Configure the ALB and the EC2 instance subnets to produce VPC flow logs. Configure the VPC flow logs to deliver logs to an Amazon S3 bucket for log analysis.

B.

Create a trail in AWS CloudTrail to capture data events. Configure the trail to deliver logs to an Amazon S3 bucket for log analysis.

C.

Configure the AWS WAF web ACL to deliver logs to an Amazon Kinesis Data Firehose delivery stream. Configure the stream to deliver the data to an Amazon S3 bucket for log analysis.

D.

Turn on access logging for the ALB. Configure the access logs to deliver the logs to an Amazon S3 bucket for log analysis.

Buy Now
Questions 66

A company's network engineer is configuring an AWS Site-to-Site VPN connection between a transit gateway and the company's on-premises network. The Site-to-Site VPN connection is configured to use BGP over two tunnels in active/active mode with equal-cost multi-path (ECMP) routing activated on the transit gateway.

When the network engineer attempts to send traffic from the on-premises network to an Amazon EC2 instance, traffic is sent over the first tunnel. However, return traffic is received over the second tunnel and is dropped at the customer gateway. The network engineer must resolve this issue without reducing the overall VPN bandwidth.

Which solution will meet these requirements?

Options:

A.

Configure the customer gateway to use AS PATH prepending and local preference to prefer one tunnel over the other.

B.

Configure the Site-to-Site VPN options to set the first tunnel as the primary tunnel to eliminate asymmetric routing.

C.

Configure the virtual tunnel interfaces on the customer gateway to allow asymmetric routing.

D.

Configure the Site-to-Site VPN to use static routing in active/active mode to ensure that traffic flows over a preferred path.

Buy Now
Questions 67

All IP addresses within a 10.0.0.0/16 VPC are fully utilized with application servers across two Availability Zones. The application servers need to send frequent UDP probes to a single central authentication server on the Internet to confirm that is running up-to-date packages. The network is designed for application servers to use a single NAT gateway for internal access. Testing reveals that a few of the servers are unable to communicate with the authentication server.

Options:

A.

The NAT gateway does not support UDP traffic.

B.

The authentication server is not accepting traffic.

C.

The NAT gateway cannot allocate more ports.

D.

The NAT gateway is launched in a private subnet.

Buy Now
Questions 68

A company has multiple AWS accounts. Each account contains one or more VPCs. A new security guideline requires the inspection of all traffic between VPCs.

The company has deployed a transit gateway that provides connectivity between all VPCs. The company also has deployed a shared services VPC with Amazon EC2 instances that include IDS services for stateful inspection. The EC2 instances are deployed across three Availability Zones. The company has set up VPC associations and routing on the transit gateway. The company has migrated a few test VPCs to the new solution for traffic inspection.

Soon after the configuration of routing, the company receives reports of intermittent connections for traffic that crosses Availability Zones.

What should a network engineer do to resolve this issue?

Options:

A.

Modify the transit gateway VPC attachment on the shared services VPC by enabling cross-Availability Zone load balancing.

B.

Modify the transit gateway VPC attachment on the shared services VPC by enabling appliance mode support.

C.

Modify the transit gateway by selecting VPN equal-cost multi-path (ECMP) routing support.

D.

Modify the transit gateway by selecting multicast support.

Buy Now
Questions 69

A finance company runs multiple applications on Amazon EC2 instances in two VPCs that are within a single AWS Region. The company uses one VPC for stock trading applications. The company uses the second VPC for financial applications. Both VPCs are connected to a transit gateway that is configured as a multicast router.

In the stock trading VPC, an EC2 instance that has an IP address of 10.128.10.2 sends trading data over a multicast network to the 239.10.10.10 IP address on UDP Port 5102. The company recently launched two new EC2 instances in the financial application VPC. The new EC2 instances need to receive the multicast stock trading data from the EC2 instance that is in the stock trading VPC.

Which combination of steps should the company take to meet this requirement? (Choose three.)

Options:

A.

Add the elastic network interfaces of the two new EC2 instances as members of the multicast group by using the group IP address of 239.10.10.10.

B.

Add an inbound rule to the security groups that are attached to the multicast receiver instances. Configure the rule as follows:

Protocol: IGMP Version 2. Port: 5102, and Source: 239 10.10.10/32

C.

Create associations to two EC2 instance IDs on the financial application VPC transit gateway attachment under the transit gateway multicast domain.

D.

Create an association to EC2 instance subnets on the financial application VPC transit gateway attachment under the transit gateway multicast domain.

Add an inbound rule to the security groups that are attached to the multicast receiver instances. Configure the rule as follows.

E.

Protocol: UDP, Port: 5102, and Source: 10.128.10.2/32

F.

Add an inbound rule to the security groups that are attached to the multicast receiver instances. Configure the rule as follows:

Protocol: IGMP Version 2. Port: All, and Source: 0 0.0.0/32

Buy Now
Questions 70

A company deploys a software solution on Amazon EC2 instances that are in a clusterplacement group. The solution's UI is a single HTML page. The HTML file size is 1,024 bytes. The software processes files that exceed 1,024 MB in size. The software shares files over the network to clients upon request. The files are shared with the Don't Fragment flag set. Elastic network interfaces of the EC2 instances are set up with jumbo frames.

The UI is always accessible from all allowed source IP addresses, regardless of whether the source IP addresses are within a VPC, on the internet, or on premises. However, clients sometimes do not receive files that they request because the files fail to travel successfully from the software to the clients.

Which options provide a possible root cause of these failures? (Choose two.)

Options:

A.

The source IP addresses are from on-premises hosts that are routed over AWS Direct Connect.

B.

The source IP addresses are from on-premises hosts that are routed over AWS Site-to-Site VPN.

C.

The source IP addresses are from hosts that connect over the public internet.

D.

The security group of the EC2 instances does not allow ICMP traffic.

E.

The operating system of the EC2 instances does not support jumbo frames.

Buy Now
Questions 71

A software company offers a software-as-a-service (SaaS) accounting application that is hosted in the AWS Cloud The application requires connectivity to the company's on-premises network. The company has two redundant 10 GB AWS Direct Connect connections between AWS and its on-premises network to accommodate the growing demand for the application.

The company already has encryption between its on-premises network and the colocation. The company needs to encrypt traffic between AWS and the edge routers in the colocation within the next few months. The company must maintain its current bandwidth.

What should a network engineer do to meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a new public VIF with encryption on the existing Direct Connect connections. Reroute traffic through the new public VIF.

B.

Create a virtual private gateway Deploy new AWS Site-to-Site VPN connections from on premises to the virtual private gateway Reroute traffic from the Direct Connect private VIF to the new VPNs.

C.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Configure MACsec on the edge routers. Reroute traffic to the new Direct Connect connections. Decommission the original Direct Connect connections

D.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Deploy a new public VIF on the new Direct Connect connections. Deploy two AWS Site-to-Site VPN connections on top of the new public VIF. Reroute traffic from the existing private VIF to the new Site-to-Site connections. Decommission the original Direct Connect connections.

Buy Now
Questions 72

A company uses a 4 Gbps AWS Direct Connect dedicated connection with a link aggregation group (LAG) bundle to connect to five VPCs that are deployed in the us-east-1 Region. Each VPC servesa different business unit and uses its own private VIF for connectivity to the on-premises environment. Users are reporting slowness when they access resources that are hosted on AWS.

A network engineer finds that there are sudden increases in throughput and that the Direct Connect connection becomes saturated at the same time for about an hour each business day. The company wants to know which business unit is causing the sudden increase in throughput. The network engineer must find out this information and implement a solution to resolve the problem.

Which solution will meet these requirements?

Options:

A.

Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.

B.

Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the bandwidth of the existing dedicated connection to 10 Gbps.

C.

Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the existing dedicated connection to a 5 Gbps hosted connection.

D.

Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.

Buy Now
Questions 73

A network engineer needs to provide dual-stack connectivity between a company's office location and an AWS account. The company's on-premises router supports dual-stack connectivity, and the VPC has been configured with dual-stack support. The company has set up two AWS Direct Connect connections to the office location. This connectivity must be highly available and must be reliable for latency-sensitive traffic.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Configure a single private VIF on each Direct Connect connection. Add both IPv4 and IPv6 peering to each private VIF. Configure the on- premises equipment with the AWS provided BGP neighbors to advertise IPv4 routes on the IPv4 peering and IPv6 routes on the IPv6 peering. Enable Bidirectional Forwarding Detection (BFD) on all peering sessions.

B.

Configure two private VIFs on each Direct Connect connection: one private VIF with the IPv4 address family and one private VIF with the IPv6 address family. Configure the on-premises equipment with the AWS provided BGP neighbors to advertise IPv4 routes on the IPv4 peering and IPv6 routes on the IPv6 peering. Enable Bidirectional Forwarding Detection (BFD) on all peering sessions.

C.

Configure a single private VIF and IPv4 peering on each Direct Connect connection. Configure the on-premises equipment with this peering to advertise the IPv6 routes in the same BGP neighbor configuration. Enable Bidirectional Forwarding Detection (BFD) on all peering sessions.

D.

Configure two private VIFs on each Direct Connect connection: one private VIF with the IPv4 address family and one private VIF with the IPv6 address family. Configure the on-premises equipment with the AWS provided BGP neighbors to advertise all IPv4 routes and IPv6 routes on all peering sessions. Keep the Bidirectional Forwarding Detection (BFD) configuration unchanged.

E.

Configure two private VIFs on each Direct Connect connection: one private VIF with the IPv4 address family and one private VIF with the IPv6 address family. Configure the on-premises equipment with the AWS provided BGP neighbors to advertise IPv4 routes on the IPv4 peering and IPv6 routes on the IPv6 peering. Reduce the BGP hello timer to 5 seconds on both the on-premises equipment and the Direct Connect configuration.

Buy Now
Questions 74

A company has critical VPC workloads that connect to an on-premises data center through two redundant active-passive AWS Direct Connect connections. However, a recent outage on one Direct Connect connection revealed that it takes more than a minute for traffic to fail over to the secondary Direct Connect connection. The company wants to reduce the failover time from minutes to seconds.

Which solution will provide the LARGEST reduction in the BGP failover time?

Options:

A.

Reduce the BGP hold-down timer that is configured on the BGP sessions on the Direct Connect connection VIFs.

B.

Configure an Amazon CloudWatch alarm for the Direct Connect connection state to invoke an AWS Lambda function to fail over the traffic.

C.

Configure Bidirectional Forwarding Detection (BFD) on the Direct Connect connections on the AWS side.

D.

Configure Bidirectional Forwarding Detection (BFD) on the Direct Connect connections on the on-premises router.

Buy Now
Questions 75

A company operates in the us-east-1 Region and the us-west-1 Region. The company is designing a solution to connect an on-premises data center to the company's AWS environment in us-east-1. The solution uses two AWS Direct Connect connections.

Traffic from us-west-1 to the data center needs to traverse the Direct Connect connections. A network engineer needs to set up active-passive functionality across the two Direct Connect connections by using a Direct Connect gateway to influence inbound traffic from VPCs that are in us-west-1 to the data center.

Which solution will meet these requirements?

Options:

A.

At the data center, set the local preference for the primary connection to be higher than the local preference for the secondary connection.

B.

Use AS path prepending to set the AS path on the primary connection to be longer than the AS path on the secondary connection.

C.

Use local preference BGP community tags to apply the 7224:7300 local preference BGP community tag to the prefixes for the primary connection. Apply the 7224:7100 local preference BGP community tag to the prefixes for the secondary connection.

D.

Use local preference BGP community tags to apply the 7224:9300 local preference BGP community tag to the prefixes for the primary connection. Apply the 7224:9100 local preference BGP community tag to the prefixes for secondary connection.

Buy Now
Questions 76

A company has an AWS environment that includes multiple VPCs that are connected by a transit gateway. The company has decided to use AWS Site-to-Site VPN to establish connectivity between its on-premises network and its AWS environment.

The company does not have a static public IP address for its on-premises network. A network engineer must implement a solution to initiate the VPN connection on the AWSside of the connection for traffic from the AWS environment to the on-premises network.

Which combination of steps should the network engineer take to establish VPN connectivity between the transit gateway and the on-premises network? (Choose three.)

Options:

A.

Configure the Site-to-Site VPN tunnel options to use Internet Key Exchange version 1 (IKEv1).

B.

Configure the Site-to-Site VPN tunnel options to use Internet Key Exchange version 2 (IKEv2).

C.

Use a private certificate authority (CA) from AWS Private Certificate Authority to create a certificate.

D.

Use a public certificate authority (CA) from AWS Private Certificate Authority to create a certificate.

E.

Create a customer gateway. Specify the current dynamic IP address of the customer gateway device’s external interface.

F.

Create a customer gateway without specifying the IP address of the customer gateway device.

Buy Now
Questions 77

A network engineer needs to set up an Amazon EC2 Auto Scaling group to run a Linux-based network appliance in a highly available architecture. The network engineer is configuring the new launch template for the Auto Scaling group.

In addition to the primary network interface the network appliance requires a second network interface that will be used exclusively by the application to exchange traffic with hosts over the internet. The company has set up a Bring Your Own IP (BYOIP) pool that includes an Elastic IP address that should be used as the public IP address for the second network interface.

How can the network engineer implement the required architecture?

Options:

A.

Configure the two network interfaces in the launch template. Define the primary network interface to be created in one of the private subnets. For the second network interface, select one of the public subnets. Choose the BYOIP pool ID as the source of public IP addresses.

B.

Configure the primary network interface in a private subnet in the launch template. Use the user data option to run a cloud-init script after boot to attach the second network interface from a subnet with auto-assign public IP addressing enabled.

C.

Create an AWS Lambda function to run as a lifecycle hook of the Auto Scaling group when an instance is launching. In the Lambda function, assign a network interface to an AWS Global Accelerator endpoint.

D.

During creation of the Auto Scaling group, select subnets for the primary network interface. Use the user data option to run a cloud-init script to allocate a second network interface and to associate an Elastic IP address from the BYOIP pool.

Buy Now
Questions 78

A company needs to manage Amazon EC2 instances through command line interfaces for Linux hosts and Windows hosts. The EC2 instances are deployed in an environment in which there is

no route to the internet. The company must implement role-based access control for management of the instances. The company has a standalone on-premises environment.

Which approach will meet these requirements with the LEAST maintenance overhead?

Options:

A.

Set up an AWS Direct Connect connection between the on-premises environment and the VPC where the instances are deployed. Configure routing, security groups, and ACLs.

Connect to the instances by using the Direct Connect connection.

B.

Deploy and configure AWS Systems Manager Agent (SSM Agent) on each instance. Deploy VPC endpoints for Systems Manager Session Manager. Connect to the instances by

using Session Manager.

C.

Establish an AWS Site-to-Site VPN connection between the on-premises environment and the VPC where the instances are deployed. Configure routing, security groups, and

ACLs. Connect to the instances by using the Site-to-Site VPN connection.

D.

Deploy an appliance to the VPC where the instances are deployed. Assign a public IP address to the appliance. Configure security groups and ACLs. Connect to the instances by

using the appliance as an intermediary.

Buy Now
Questions 79

A company runs applications in two VPCs that are in separate AWS Regions. One VPC is in the us-east-1 Region. The second VPC is in the us-west-1 Region. The company needs to establish connectivity between the two VPCs. The company also needs to connect the VPCs to applications that run in an on-premises data center.

The current traffic requirement between the VPCs is 50 ТВ per month. The company expects traffic volume between the VPCs to increase. The traffic requirement from the VPCs to the on-premises data center is 10 ТВ per month. The company expects the traffic between the VPCs and the data center to remain constant.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create a transit gateway in each Region. Create VPN connections from the transit gateways to the on-premises firewall. Create a peering connection between the transit gateways.

B.

Create a virtual private gateway in each Region. Create VPN connections from the on-premises firewall to the virtual private gateways. Configure the on-premises firewall to route the traffic between the two VPCs.

C.

Create a virtual private gateway in each Region. Create VPN connections from the on-premises firewall to the virtual private gateways. Create a VPC peering connection between the two VPCs.

D.

Create a virtual private gateway in each Region. Create VPN connections from the on-premises firewall to the virtual private gateways. Create a VPN connection between the virtual private gateways.

Buy Now
Questions 80

A company has deployed an application in which the front end of the application communicates with the backend instances through a Network Load Balancer (NLB) in the same VPC. The application is highly available across two Availability Zones. The company wants to limit the amount of traffic that travels across the Availability Zones. Traffic from the front end of the application must stay in the same Availability Zone unless there is no healthy target in that Availability Zone behind the NLB. If there is no healthy target in the same Availability Zone, traffic must be sent to the other Availability Zone.

Which solution will meet these requirements?

Options:

A.

Create a private hosted zone with weighted routing for each Availability Zone. Point the primary record to the local Availability Zone NLB DNS record. Point the secondary record to the Regional NLB DNS record. Configure the front end of the application to perform DNS lookups on the local private hosted zone records.

B.

Turn off cross-zone load balancing on the NLB. Configure the front end of the application to perform DNS lookups on the local Availability Zone NLB DNS record.

C.

Create a private hosted zone. Create a failover record for each Availability Zone. For each failover record, point the primary record to the local Availability Zone NLB DNS record and point the secondary record to the Regional NLB DNS record. Configure the front end of the application to perform DNS lookups on the local private hosted zone records.

D.

Enable sticky sessions (session affinity) so that the NLB can bind a user’s session to targets in the same Availability Zone.

Buy Now
Questions 81

A network engineer needs to build an encrypted connection between an on-premises data center and a VPC. The network engineer attaches the VPC to a virtual private gateway and sets up an AWS Site-to-Site VPN connection. The VPN tunnel is UP after configuration and is working. However, during rekey for phase 2 of the VPN negotiation, the customer gateway device is receiving different parameters than the parameters that the device is configured to support.

The network engineer checks the IPsec configuration of the VPN tunnel. The networkengineer notices that the customer gateway device is configured with the most secure encryption algorithms that the AWS Site-to-Site VPN configuration file provides.

What should the network engineer do to troubleshoot and correct the issue?

Options:

A.

Check the native virtual private gateway logs. Restrict the VPN tunnel options to the specific VPN parameters that the virtual private gateway requires.

B.

Check the native customer gateway logs. Restrict the VPN tunnel options to the specific VPN parameters that the customer gateway requires.

C.

Check Amazon CloudWatch logs of the virtual private gateway. Restrict the VPN tunnel options to the specific VPN parameters that the virtual private gateway requires.

D.

Check Amazon CloudWatch logs of the customer gateway. Restrict the VPN tunnel options to the specific VPN parameters that the customer gateway requires.

Buy Now
Questions 82

A company is using Amazon Route 53 Resolver DNS Firewall in a VPC to block all domains except domains that are on an approved list. The company is concerned that if DNS Firewall is unresponsive, resources in the VPC might be affected if the network cannot resolve any DNS queries. To maintain application service level agreements, the company needs DNS queries to continue to resolve even if Route 53 Resolver does not receive a response from DNS Firewall.

Which change should a network engineer implement to meet these requirements?

Options:

A.

Update the DNS Firewall VPC configuration to disable fail open for the VPC.

B.

Update the DNS Firewall VPC configuration to enable fail open for the VPC.

C.

Create a new DHCP options set with parameter dns_firewall_fail_open=false. Associate the new DHCP options set with the VPC.

D.

Create a new DHCP options set with parameter dns_firewall_fail_open=true. Associate the new DHCP options set with the VPC.

Buy Now
Questions 83

A company is deploying an application. The application is implemented in a series of containers in an Amazon Elastic Container Service (Amazon ECS) cluster. The company will use the Fargate launch type for its tasks. The containers will run workloads that require connectivity initiated over an SSL connection. Traffic must be able to flow to the application from other AWS accounts over private connectivity. The application must scale in a manageable way as more consumers use the application.

Which solution will meet these requirements?

Options:

A.

Choose a Gateway Load Balancer (GLB) as the type of load balancer for the ECS service. Create a lifecycle hook to add new tasks to the target group from Amazon ECS as required to handle scaling. Specify the GLB in the service definition. Create a VPC peer for external AWS accounts. Update the route tables so that the AWS accounts can reach the GLB.

B.

Choose an Application Load Balancer (ALB) as the type of load balancer for the ECS service. Create path-based routing rules to allow the application to target the containers that are registered in the target group. Specify the ALB in the service definition. Create a VPC endpoint service for the ALB Share the VPC endpoint service with other AWS accounts.

C.

Choose an Application Load Balancer (ALB) as the type of load balancer for the ECS service. Create path-based routing rules to allow the application to target the containers that are registered in the target group. Specify the ALB in the service definition. Create a VPC peer for the external AWS accounts. Update the route tables so that the AWS accounts can reach the ALB.

D.

Choose a Network Load Balancer (NLB) as the type of load balancer for the ECS service. Specify the NLB in the service definition. Create a VPC endpoint service for the NLB. Share the VPC endpoint service with other AWS accounts.

Buy Now
Questions 84

A company runs an application on Amazon EC2 instances. A network engineer implements a NAT gateway in the application's VPC to replace self-managed NAT instances. After the network engineer shifts traffic from the self-managed NAT instances to the NAT gateway, users begin to report issues.

During troubleshooting, the network engineer discovers that the connection to the application is closing after approximately 6 minutes of inactivity.

What should the network engineer do to resolve this issue?

Options:

A.

Check for increases in the Amazon CloudWatch IdleTimeoutCount metric for the NAT gateway. Configure TCP keepalive on the application EC2 instances.

B.

Check for increases in the Amazon CloudWatch ErrorPortAIlocation metric for the NAT gateway. Configure an HTTP timeout value on the application EC2 instances.

C.

Check for increases in the Amazon CloudWatch PacketsDropCount metric for the NAT gateway. Configure an HTTPS timeout value on the application EC2 instances.

D.

Check for decreases in the Amazon CloudWatch ActiveConnectionCount metric for the NAT gateway. Configure UDP keepalive on the application EC2 instances.

Buy Now
Questions 85

A company is using a NAT gateway to allow internet connectivity for private subnets in a VPC in the us-west-2 Region. After a security audit, the company needs to remove the NAT gateway.

In the private subnets, the company has resources that use the unified Amazon CloudWatch agent. A network engineer must create a solution to ensure that the unified CloudWatch agent continues to work after the removal of the NAT gateway.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Validate that private DNS is enabled on the VPC by setting the enableDnsHostnames VPC attribute and the enableDnsSupport VPC attribute to true.

B.

Create a new security group with an entry to allow outbound traffic that uses the TCP protocol on port 443 to destination 0.0.0.0/0

C.

Create a new security group with entries to allow inbound traffic that uses the TCP protocol on port 443 from the IP prefixes of the private subnets.

D.

Create the following interface VPC endpoints in the VPC: com.amazonaws.us-west-2.logs and com.amazonaws.us-west-2.monitoring. Associate the new security group with the endpoint network interfaces.

E.

Create the following interface VPC endpoint in the VPC: com.amazonaws.us-west-2.cloudwatch. Associate the new security group with the endpoint network interfaces.

F.

Associate the VPC endpoint or endpoints with route tables that the private subnets use.

Buy Now
Questions 86

A company has two teams: Team A and Team B. Team A has VPCs that run in Account A. The team uses a transit gateway (TGW-A) to route traffic between workloads that run in the different VPCs. Similarly, Team В has VPCs that run in Account B. Team В uses a different transit gateway (TGW-B) to route traffic between workloads that run in the different VPCs.

The company's network team manages the routing for Team A and Team В. The network team wants to retire TGW-B and use a single transit gateway to manage routing for the VPCs of both teams.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create a resource share for TGW-A Share TGW-A with Account B. Create VPC attachments for the VPCs in Account В. Configure routing for the VPCs in TGW-A route tables. Update the route tables of the VPCs in Account В to forward traffic to TGW-A. Delete TGW-B attachments and TGW-B.

B.

Create a resource share for TGW-A. Share TGW-A with Account В. Replicate the TGW-B configuration to TGW-A to automatically start routing changes for the VPCs in Account В. Delete TGW-B when routing changes are complete.

C.

Create a new transit gateway (TGW-C) in Account A. Create a resource share for TGW-C. Share TGW-C with Account B. Create VPC attachments for the VPCs in Account A and Account В. Configure routing for all the VPCs in TGW-C route tables. Update the routetables for the VPCs in Account A and Account В to forward traffic to TGW-C. Delete TGW-A attachments and TGW-B attachments. Delete TGW-A and TGW-B.

D.

Create a new transit gateway (TGW-C) in a new account (Account C). Create a resource share for TGW-C. Share TGW-C with Account A and Account B. Create VPC attachments for the VPCs in Account A and Account В. Configure routing for all the VPCs in TGW-C route tables. Update the route tables for the VPCs in Account A and Account В to forward traffic to TGW-C. Delete TGW-A attachments and TGW-B attachments. Delete TGW-A and TGW-B.

Buy Now
Questions 87

A company has an AWS Site-to-Site VPN connection between its existing VPC and on-premises network. The default DHCP options set is associated with the VPC. The company has an application that is running on an Amazon Linux 2 Amazon EC2 instance in the VPC. The application must retrieve an Amazon RDS database secret that is stored in AWS Secrets Manager through a private VPC endpoint. An on-premises application provides internal RESTful API service that can be reached by URL (https://api.example.internal). Two on-premises Windows DNS servers provide internal DNS resolution.

The application on the EC2 instance needs to call the internal API service that is deployed in the on-premises environment. When the application on the EC2 instance attempts to call the internal API service by referring to the hostname that is assigned to the service, the call fails. When a network engineer tests the API service call from the same EC2 instance by using the API service's IP address, the call is successful.

What should the network engineer do to resolve this issue and prevent the same problem from affecting other resources in the VPC?

Options:

A.

Create a new DHCP options set that specifies the on-premises Windows DNS servers. Associate the new DHCP options set with the existing VPC. Reboot the Amazon Linux 2 EC2 instance.

B.

Create an Amazon Route 53 Resolver rule. Associate the rule with the VPC. Configure the rule to forward DNS queries to the on-premises Windows DNS servers if the domain name matches example.internal.

C.

Modify the local host file in the Amazon Linux 2 EC2 instance in the VPMap the service domain name (api.example.internal) to the IP address of the internal API service.

D.

Modify the local /etc/resolv.conf file in the Amazon Linux 2 EC2 instance in the VPC. Change the IP addresses of the name servers in the file to the IP addresses of the company's on-premisesWindows DNS servers.

Buy Now
Exam Code: ANS-C01
Exam Name: Amazon AWS Certified Advanced Networking - Specialty
Last Update: Jun 19, 2025
Questions: 288
$66  $164.99
$50  $124.99
$42  $104.99
buy now ANS-C01