New Year Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 65percent

Welcome To DumpsPedia

Data-Engineer-Associate Sample Questions Answers

Questions 4

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Buy Now
Questions 5

A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.

The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

AWS Glue workflows

B.

AWS Step Functions tasks

C.

AWS Lambda functions

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows

Buy Now
Questions 6

A company uses Amazon Redshift as its data warehouse. Data encoding is applied to the existing tables of the data warehouse. A data engineer discovers that the compression encoding applied to some of the tables is not the best fit for the data.

The data engineer needs to improve the data encoding for the tables that have sub-optimal encoding.

Which solution will meet this requirement?

Options:

A.

Run the ANALYZE command against the identified tables. Manually update the compression encoding of columns based on the output of the command.

B.

Run the ANALYZE COMPRESSION command against the identified tables. Manually update the compression encoding of columns based on the output of the command.

C.

Run the VACUUM REINDEX command against the identified tables.

D.

Run the VACUUM RECLUSTER command against the identified tables.

Buy Now
Questions 7

A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.

The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Aurora as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the Aurora data catalog. Schedule the Lambda functions to run periodically.

B.

Use the AWS Glue Data Catalog as the central metadata repository. Use AWS Glue crawlers to connect to multiple data stores and to update the Data Catalog with metadata changes. Schedule the crawlers to run periodically to update the metadata catalog.

C.

Use Amazon DynamoDB as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the DynamoDB data catalog. Schedule the Lambda functions to run periodically.

D.

Use the AWS Glue Data Catalog as the central metadata repository. Extract the schema for Amazon RDS and Amazon Redshift sources, and build the Data Catalog. Use AWS Glue crawlers for data that is in Amazon S3 to infer the schema and to automatically update the Data Catalog.

Buy Now
Questions 8

A company receives marketing campaign data from a vendor. The company ingests the data into an Amazon S3 bucket every 40 to 60 minutes. The data is in CSV format. File sizes are between 100 KB and 300 KB.

A data engineer needs to set-up an extract, transform, and load (ETL) pipeline to upload the content of each file to Amazon Redshift.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an AWS Lambda function that connects to Amazon Redshift and runs a COPY command. Use Amazon EventBridge to invoke the Lambda function based on an Amazon S3 upload trigger.

B.

Create an Amazon Data Firehose stream. Configure the stream to use an AWS Lambda function as a source to pull data from the S3 bucket. Set Amazon Redshift as the destination.

C.

Use Amazon Redshift Spectrum to query the S3 bucket. Configure an AWS Glue Crawler for the S3 bucket to update metadata in an AWS Glue Data Catalog.

D.

Creates an AWS Database Migration Service (AWS DMS) task. Specify an appropriate data schema to migrate. Specify the appropriate type of migration to use.

Buy Now
Questions 9

An ecommerce company processes millions of orders each day. The company uses AWS Glue ETL to collect data from multiple sources, clean the data, and store the data in an Amazon S3 bucket in CSV format by using the S3 Standard storage class. The company uses the stored data to conduct daily analysis.

The company wants to optimize costs for data storage and retrieval.

Which solution will meet this requirement?

Options:

A.

Transition the data to Amazon S3 Glacier Flexible Retrieval.

B.

Transition the data from Amazon S3 to an Amazon Aurora cluster.

C.

Configure AWS Glue ETL to transform the incoming data to Apache Parquet format.

D.

Configure AWS Glue ETL to use Amazon EMR to process incoming data in parallel.

Buy Now
Questions 10

A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.

The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to use Data Quality Definition Language (DQDL) rules in an AWS Glue Data Quality job.

Which rule will meet these requirements?

Options:

A.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 1.0

B.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 1.0

C.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 100

D.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 100

Buy Now
Questions 11

A healthcare company stores patient records in an on-premises MySQL database. The company creates an application to access the MySQL database. The company must enforce security protocols to protect the patient records. The company currently rotates database credentials every 30 days to minimize the risk of unauthorized access.

The company wants a solution that does not require the company to modify the application code for each credential rotation.

Which solution will meet this requirement with the least operational overhead?

Options:

A.

Assign an IAM role access permissions to the database. Configure the application to obtain temporary credentials through the IAM role.

B.

Use AWS Key Management Service (AWS KMS) to generate encryption keys. Configure automatic key rotation. Store the encrypted credentials in an Amazon DynamoDB table.

C.

Use AWS Secrets Manager to automatically rotate credentials. Allow the application to retrieve the credentials by using API calls.

D.

Store credentials in an encrypted Amazon S3 bucket. Rotate the credentials every month by using an S3 Lifecycle policy. Use bucket policies to control access.

Buy Now
Questions 12

A manufacturing company wants to collect data from sensors. A data engineer needs to implement a solution that ingests sensor data in near real time.

The solution must store the data to a persistent data store. The solution must store the data in nested JSON format. The company must have the ability to query from the data store with a latency of less than 10 milliseconds.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use a self-hosted Apache Kafka cluster to capture the sensor data. Store the data in Amazon S3 for querying.

B.

Use AWS Lambda to process the sensor data. Store the data in Amazon S3 for querying.

C.

Use Amazon Kinesis Data Streams to capture the sensor data. Store the data in Amazon DynamoDB for querying.

D.

Use Amazon Simple Queue Service (Amazon SQS) to buffer incoming sensor data. Use AWS Glue to store the data in Amazon RDS for querying.

Buy Now
Questions 13

A company loads transaction data for each day into Amazon Redshift tables at the end of each day. The company wants to have the ability to track which tables have been loaded and which tables still need to be loaded.

A data engineer wants to store the load statuses of Redshift tables in an Amazon DynamoDB table. The data engineer creates an AWS Lambda function to publish the details of the load statuses to DynamoDB.

How should the data engineer invoke the Lambda function to write load statuses to the DynamoDB table?

Options:

A.

Use a second Lambda function to invoke the first Lambda function based on Amazon CloudWatch events.

B.

Use the Amazon Redshift Data API to publish an event to Amazon EventBridqe. Configure an EventBridge rule to invoke the Lambda function.

C.

Use the Amazon Redshift Data API to publish a message to an Amazon Simple Queue Service (Amazon SQS) queue. Configure the SQS queue to invoke the Lambda function.

D.

Use a second Lambda function to invoke the first Lambda function based on AWS CloudTrail events.

Buy Now
Questions 14

A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.

Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.

Which solution will meet this requirement with the LEAST latency?

Options:

A.

Create an AWS Lambda function to query Aurora for drops in network usage. Use Amazon EventBridge to automatically invoke the Lambda function every minute.

B.

Modify the processing application to publish the data to an Amazon Kinesis data stream. Create an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to detect drops in network usage.

C.

Replace the Aurora database with an Amazon DynamoDB table. Create an AWS Lambda function to query the DynamoDB table for drops in network usage every minute. Use DynamoDB Accelerator (DAX) between the processing application and DynamoDB table.

D.

Create an AWS Lambda function within the Database Activity Streams feature of Aurora to detect drops in network usage.

Buy Now
Questions 15

A company needs to implement a new inventory management system that provides near real-time updates and visibility across all AWS Regions. The new solution must provide centralized access control over data access and permissions. The company has a separate inventory management team assigned to each Region. Each inventory management team needs to update inventory levels.

A data engineer must implement Amazon Redshift data sharing with write capabilities. The solution must follow the principle of least privilege.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure a single Redshift datashare from the company's headquarters that provides read-only access for all Regions. Configure a separate AWS Glue ETL job to update data for each Region.

B.

Configure three Regional Redshift datashares that provide full write access. Allow full self-managed access controls.

C.

Configure a single Redshift datashare from the company's headquarters that has selective write permissions for inventory. Set up Regional namespace controls.

D.

Configure separate Redshift datashares for multiple table types that provide full write access. Distribute the datashares across all Regional clusters. Allow self-managed Regional schema permissions.

Buy Now
Questions 16

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

Options:

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Buy Now
Questions 17

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

Options:

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Buy Now
Questions 18

A data engineer must orchestrate a series of Amazon Athena queries that will run every day. Each query can run for more than 15 minutes.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Use an AWS Lambda function and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

B.

Create an AWS Step Functions workflow and add two states. Add the first state before the Lambda function. Configure the second state as a Wait state to periodically check whether the Athena query has finished using the Athena Boto3 get_query_execution API call. Configure the workflow to invoke the next query when the current query has finished running.

C.

Use an AWS Glue Python shell job and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

D.

Use an AWS Glue Python shell script to run a sleep timer that checks every 5 minutes to determine whether the current Athena query has finished running successfully. Configure the Python shell script to invoke the next query when the current query has finished running.

E.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the Athena queries in AWS Batch.

Buy Now
Questions 19

A company uses AWS Glue Data Catalog to index data that is uploaded to an Amazon S3 bucket every day. The company uses a daily batch processes in an extract, transform, and load (ETL) pipeline to upload data from external sources into the S3 bucket.

The company runs a daily report on the S3 data. Some days, the company runs the report before all the daily data has been uploaded to the S3 bucket. A data engineer must be able to send a message that identifies any incomplete data to an existing Amazon Simple Notification Service (Amazon SNS) topic.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create data quality checks for the source datasets that the daily reports use. Create a new AWS managed Apache Airflow cluster. Run the data quality checks by using Airflow tasks that run data quality queries on the columns data type and the presence of null values. Configure Airflow Directed Acyclic Graphs (DAGs) to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

B.

Create data quality checks on the source datasets that the daily reports use. Create a new Amazon EMR cluster. Use Apache Spark SQL to create Apache Spark jobs in the EMR cluster that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow. Configure the workflow to send an email notification that informs the data engineer about the incomplete da

C.

Create data quality checks on the source datasets that the daily reports use. Create data quality actions by using AWS Glue workflows to confirm the completeness and consistency of the datasets. Configure the data quality actions to create an event in Amazon EventBridge if a dataset is incomplete. Configure EventBridge to send the event that informs the data engineer about the incomplete datasets to the Amazon SNS topic.

D.

Create AWS Lambda functions that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow that runs the Lambda functions. Configure the Step Functions workflow to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

Buy Now
Questions 20

A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.

Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?

Options:

A.

AWS DataSync

B.

AWS Glue

C.

AWS Direct Connect

D.

Amazon S3 Transfer Acceleration

Buy Now
Questions 21

A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.

The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.

Which solution will meet these requirements?

Options:

A.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Configure the output destination to a new path in the existing S3 bucket.

B.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Specify a database name for the output.

C.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Specify a database name for the output.

D.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Configure the output destination to a new path in the existing S3 bucket.

Buy Now
Questions 22

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

Options:

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

Buy Now
Questions 23

A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.

Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Use Hadoop Distributed File System (HDFS) as a persistent data store.

B.

Use Amazon S3 as a persistent data store.

C.

Use x86-based instances for core nodes and task nodes.

D.

Use Graviton instances for core nodes and task nodes.

E.

Use Spot Instances for all primary nodes.

Buy Now
Questions 24

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Buy Now
Questions 25

A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.

The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use AWS Glue Python jobs to read and transform the CSV files.

B.

Use an AWS Glue custom crawler to read and transform the CSV files.

C.

Use an AWS Glue workflow to build a set of jobs to crawl and transform the CSV files.

D.

Use AWS Glue DataBrew recipes to read and transform the CSV files.

Buy Now
Questions 26

A data engineer is processing a large amount of log data from web servers. The data is stored in an Amazon S3 bucket. The data engineer uses AWS services to process the data every day. The data engineer needs to extract specific fields from the raw log data and load the data into a data warehouse for analysis.

Options:

A.

Use Amazon EMR to run Apache Hive queries on the raw log files in the S3 bucket to extract the specified fields. Store the output as ORC files in the original S3 bucket.

B.

Use AWS Step Functions to orchestrate a series of AWS Batch jobs to parse the raw log files. Load the specified fields into an Amazon RDS for PostgreSQL database.

C.

Use an AWS Glue crawler to parse the raw log data in the S3 bucket and to generate a schema. Use AWS Glue ETL jobs to extract and transform the data and to load it into Amazon Redshift.

D.

Use AWS Glue DataBrew to run AWS Glue ETL jobs on a schedule to extract the specified fields from the raw log files in the S3 bucket. Load the data into partitioned tables in Amazon Redshift.

Buy Now
Questions 27

A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a custom Python script on an Amazon Elastic Container Service (Amazon ECS) cluster.

B.

Create an AWS Lambda Python function with provisioned concurrency.

C.

Deploy a custom Python script that can integrate with API Gateway on Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Create an AWS Lambda function. Ensure that the function is warm by scheduling an Amazon EventBridge rule to invoke the Lambda function every 5 minutes by using mock events.

Buy Now
Questions 28

A company stores sales data in an Amazon RDS for MySQL database. The company needs to start a reporting process between 6:00 A.M. and 6:10 A.M. every Monday. The reporting process must generate a CSV file and store the file in an Amazon S3 bucket.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)

Options:

A.

Create an Amazon EventBridge rule to run every Monday at 6:00 A.M.

B.

Create an Amazon EventBridge Scheduler to run every Monday at 6:00 A.M.

C.

Create and invoke an AWS Batch job that runs a script in an Amazon Elastic Container Service (Amazon ECS) container. Configure the script to generate the report and to save it to the S3 bucket.

D.

Create and invoke an AWS Glue ETL job to generate the report and to save it to the S3 bucket.

E.

Create and invoke an Amazon EMR Serverless job to generate the report and to save it to the S3 bucket.

Buy Now
Questions 29

A mobile gaming company wants to capture data from its gaming app. The company wants to make the data available to three internal consumers of the data. The data records are approximately 20 KB in size.

The company wants to achieve optimal throughput from each device that runs the gaming app. Additionally, the company wants to develop an application to process data streams. The stream-processing application must have dedicated throughput for each internal consumer.

Which solution will meet these requirements?

Options:

A.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Use the enhanced fan-out feature with a stream for each internal consumer.

B.

Configure the mobile app to call the PutRecordBatch API operation to send data to Amazon Data Firehose. Submit an AWS Support case to turn on dedicated throughput for the company's AWS account. Allow each internal consumer to access the stream.

C.

Configure the mobile app to use the Amazon Kinesis Producer Library (KPL) to send data to Amazon Data Firehose. Use the enhanced fan-out feature with a stream for each internal consumer.

D.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Host the stream-processing application for each internal consumer on Amazon EC2 instances. Configure auto scaling for the EC2 instances.

Buy Now
Questions 30

A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.

The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.

Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)

Options:

A.

Turn on the public access setting for the DB instance.

B.

Update the security group of the DB instance to allow only Lambda function invocations on the database port.

C.

Configure the Lambda function to run in the same subnet that the DB instance uses.

D.

Attach the same security group to the Lambda function and the DB instance. Include a self-referencing rule that allows access through the database port.

E.

Update the network ACL of the private subnet to include a self-referencing rule that allows access through the database port.

Buy Now
Questions 31

A company receives .csv files that contain physical address data. The data is in columns that have the following names: Door_No, Street_Name, City, and Zip_Code. The company wants to create a single column to store these values in the following format:

Which solution will meet this requirement with the LEAST coding effort?

Options:

A.

Use AWS Glue DataBrew to read the files. Use the NEST TO ARRAY transformation to create the new column.

B.

Use AWS Glue DataBrew to read the files. Use the NEST TO MAP transformation to create the new column.

C.

Use AWS Glue DataBrew to read the files. Use the PIVOT transformation to create the new column.

D.

Write a Lambda function in Python to read the files. Use the Python data dictionary type to create the new column.

Buy Now
Questions 32

A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.

The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Database Migration Service (AWS DMS) to migrate the Hive metastore into Amazon S3. Configure AWS Glue Data Catalog to scan Amazon S3 to produce the data catalog.

B.

Configure a Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use AWS Glue Data Catalog to store the company's data catalog as an external data catalog.

C.

Configure an external Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use Amazon Aurora MySQL to store the company's data catalog.

D.

Configure a new Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use the new metastore as the company's data catalog.

Buy Now
Questions 33

A company receives a daily file that contains customer data in .xls format. The company stores the file in Amazon S3. The daily file is approximately 2 GB in size.

A data engineer concatenates the column in the file that contains customer first names and the column that contains customer last names. The data engineer needs to determine the number of distinct customers in the file.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Create and run an Apache Spark job in an AWS Glue notebook. Configure the job to read the S3 file and calculate the number of distinct customers.

B.

Create an AWS Glue crawler to create an AWS Glue Data Catalog of the S3 file. Run SQL queries from Amazon Athena to calculate the number of distinct customers.

C.

Create and run an Apache Spark job in Amazon EMR Serverless to calculate the number of distinct customers.

D.

Use AWS Glue DataBrew to create a recipe that uses the COUNT_DISTINCT aggregate function to calculate the number of distinct customers.

Buy Now
Questions 34

A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.

The company wants to reduce Athena costs but does not want to recreate the data pipeline.

Which solution will meet these requirements with the LEAST management effort?

Options:

A.

Change the Firehose output format to Apache Parquet. Provide a custom S3 object YYYYMMDD prefix expression and specify a large buffer size. For the existing data, create an AWS Glue extract, transform, and load (ETL) job. Configure the ETL job to combine small JSON files, convert the JSON files to large Parquet files, and add the YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena tab

B.

Create an Apache Spark job that combines JSON files and converts the JSON files to Apache Parquet files. Launch an Amazon EMR ephemeral cluster every day to run the Spark job to create new Parquet files in a different S3 location. Use the ALTER TABLE SET LOCATION statement to reflect the new S3 location on the existing Athena table.

C.

Create a Kinesis data stream as a delivery destination for Firehose. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to run Apache Flink on the Kinesis data stream. Use Flink to aggregate the data and save the data to Amazon S3 in Apache Parquet format with a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

D.

Integrate an AWS Lambda function with Firehose to convert source records to Apache Parquet and write them to Amazon S3. In parallel, run an AWS Glue extract, transform, and load (ETL) job to combine the JSON files and convert the JSON files to large Parquet files. Create a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

Buy Now
Questions 35

A media company uses software as a service (SaaS) applications to gather data by using third-party tools. The company needs to store the data in an Amazon S3 bucket. The company will use Amazon Redshift to perform analytics based on the data.

Which AWS service or feature will meet these requirements with the LEAST operational overhead?

Options:

A.

Amazon Managed Streaming for Apache Kafka (Amazon MSK)

B.

Amazon AppFlow

C.

AWS Glue Data Catalog

D.

Amazon Kinesis

Buy Now
Questions 36

A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.

Which solution will meet this requirement with LEAST operational overhead?

Options:

A.

Use Amazon Macie to create and run a sensitive data discovery job to detect and remove PII.

B.

Use S3 Object Lambda to access the data, and use Amazon Comprehend to detect and remove PII.

C.

Use Amazon Kinesis Data Firehose and Amazon Comprehend to detect and remove PII.

D.

Use an AWS Glue DataBrew job to store the PII data in a second S3 bucket. Perform analysis on the data that remains in the original S3 bucket.

Buy Now
Questions 37

A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.

Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use one AWS Glue job to replicate existing data. Use a second AWS Glue job to replicate future changes.

B.

Use AWS Database Migration Service (AWS DMS) to replicate existing data. Use AWS Glue jobs to replicate future changes.

C.

Use AWS Database Migration Service (AWS DMS) to replicate existing data and future changes.

D.

Use AWS Glue jobs to replicate existing data. Use Amazon Kinesis Data Streams to replicate future changes.

Buy Now
Questions 38

A company receives a data file from a partner each day in an Amazon S3 bucket. The company uses a daily AW5 Glue extract, transform, and load (ETL) pipeline to clean and transform each data file. The output of the ETL pipeline is written to a CSV file named Dairy.csv in a second 53 bucket.

Occasionally, the daily data file is empty or is missing values for required fields. When the file is missing data, the company can use the previous day's CSV file.

A data engineer needs to ensure that the previous day's data file is overwritten only if the new daily file is complete and valid.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Invoke an AWS Lambda function to check the file for missing data and to fill in missing values in required fields.

B.

Configure the AWS Glue ETL pipeline to use AWS Glue Data Quality rules. Develop rules in Data Quality Definition Language (DQDL) to check for missing values in required files and empty files.

C.

Use AWS Glue Studio to change the code in the ETL pipeline to fill in any missing values in the required fields with the most common values for each field.

D.

Run a SQL query in Amazon Athena to read the CSV file and drop missing rows. Copy the corrected CSV file to the second S3 bucket.

Buy Now
Questions 39

A technology company currently uses Amazon Kinesis Data Streams to collect log data in real time. The company wants to use Amazon Redshift for downstream real-time queries and to enrich the log data.

Which solution will ingest data into Amazon Redshift with the LEAST operational overhead?

Options:

A.

Set up an Amazon Data Firehose delivery stream to send data to a Redshift provisioned cluster table.

B.

Set up an Amazon Data Firehose delivery stream to send data to Amazon S3. Configure a Redshift provisioned cluster to load data every minute.

C.

Configure Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to send data directly to a Redshift provisioned cluster table.

D.

Use Amazon Redshift streaming ingestion from Kinesis Data Streams and to present data as a materialized view.

Buy Now
Questions 40

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

Options:

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Buy Now
Questions 41

A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventory management system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.

Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.

Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)

Options:

A.

The producer experienced network-related timeouts.

B.

The stream's value for the IteratorAgeMilliseconds metric was too high.

C.

There was a change in the number of shards, record processors, or both.

D.

The AggregationEnabled configuration property was set to true.

E.

The max_records configuration property was set to a number that was too high.

Buy Now
Questions 42

A company uses Amazon DataZone as a data governance and business catalog solution. The company stores data in an Amazon S3 data lake. The company uses AWS Glue with an AWS Glue Data Catalog.

A data engineer needs to publish AWS Glue Data Quality scores to the Amazon DataZone portal.

Which solution will meet this requirement?

Options:

A.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

B.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

C.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

D.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

Buy Now
Questions 43

A company has a data warehouse that contains a table that is named Sales. The company stores the table in Amazon Redshift The table includes a column that is named city_name. The company wants to query the table to find all rows that have a city_name that starts with "San" or "El."

Which SQL query will meet this requirement?

Options:

A.

Select * from Sales where city_name - '$(San|EI)";

B.

Select * from Sales where city_name -, ^(San|EI) *';

C.

Select * from Sales where city_name - '$(San&EI)";

D.

Select * from Sales where city_name -, ^(San&EI)";

Buy Now
Questions 44

A sales company uses AWS Glue ETL to collect, process, and ingest data into an Amazon S3 bucket. The AWS Glue pipeline creates a new file in the S3 bucket every hour. File sizes vary from 200 KB to 300 KB. The company wants to build a sales prediction model by using data from the previous 5 years. The historic data includes 44,000 files.

The company builds a second AWS Glue ETL pipeline by using the smallest worker type. The second pipeline retrieves the historic files from the S3 bucket and processes the files for downstream analysis. The company notices significant performance issues with the second ETL pipeline.

The company needs to improve the performance of the second pipeline.

Which solution will meet this requirement MOST cost-effectively?

Options:

A.

Use a larger worker type.

B.

Increase the number of workers in the AWS Glue ETL jobs.

C.

Use the AWS Glue DynamicFrame grouping option.

D.

Enable AWS Glue auto scaling.

Buy Now
Questions 45

A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.

The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.

The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Run a scheduled AWS Glue extract, transform, and load (ETL) job to get the MySQL database updates by using a Java Database Connectivity (JDBC) connection. Set Amazon Redshift as the destination for the ETL job.

B.

Run a full load plus CDC task in AWS Database Migration Service (AWS DMS) to continuously replicate the MySQL database changes. Set Amazon Redshift as the destination for the task.

C.

Use the Amazon AppFlow SDK to build a custom connector for the MySQL database to continuously replicate the database changes. Set Amazon Redshift as the destination for the connector.

D.

Run scheduled AWS DataSync tasks to synchronize data from the MySQL database. Set Amazon Redshift as the destination for the tasks.

Buy Now
Questions 46

A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.

The data engineer requires a less manual way to update the Lambda functions.

Which solution will meet this requirement?

Options:

A.

Store a pointer to the custom Python scripts in the execution context object in a shared Amazon S3 bucket.

B.

Package the custom Python scripts into Lambda layers. Apply the Lambda layers to the Lambda functions.

C.

Store a pointer to the custom Python scripts in environment variables in a shared Amazon S3 bucket.

D.

Assign the same alias to each Lambda function. Call reach Lambda function by specifying the function's alias.

Buy Now
Questions 47

A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.

Which solution will run the Glue jobs in the MOST cost-effective way?

Options:

A.

Choose the FLEX execution class in the Glue job properties.

B.

Use the Spot Instance type in Glue job properties.

C.

Choose the STANDARD execution class in the Glue job properties.

D.

Choose the latest version in the GlueVersion field in the Glue job properties.

Buy Now
Questions 48

A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.

Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.

Which solution will meet this requirement?

Options:

A.

Create an AWS Lambda function to connect to the Redshift data warehouse. Configure the Lambda function to use the Redshift COPY command to copy the required data to the vendor's S3 bucket on a schedule.

B.

Create an AWS Glue job to connect to the Redshift data warehouse. Configure the AWS Glue job to use the Redshift UNLOAD command to load the required data to the vendor's S3 bucket on a schedule.

C.

Use the Amazon Redshift data sharing feature. Set the vendor's S3 bucket as the destination. Configure the source to be as a custom SQL query that selects the required data.

D.

Configure Amazon Redshift Spectrum to use the vendor's S3 bucket as destination. Enable data querying in both directions.

Buy Now
Questions 49

A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.

A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use an Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Apache Hive for one-time queries and analytical reporting. Use Amazon OpenSearch Service to bulk ingest the data into compute optimized instances. Use OpenSearch Dashboards in OpenSearch Service for the dashboard.

B.

Use a provisioned Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

C.

Use AWS Glue to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Redshift Spectrum for one-time queries and analytical reporting. Use OpenSearch Dashboards in Amazon OpenSearch Service for the dashboard.

D.

Use AWS Glue to process incoming data. Use AWS Lambda and S3 Event Notifications to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

Buy Now
Questions 50

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

B.

Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

C.

Create a PvSpark proqram in AWS Lambda to extract, transform, and load the data into the S3 bucket.

D.

Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

Buy Now
Questions 51

A data engineer is using an Apache Iceberg framework to build a data lake that contains 100 TB of data. The data engineer wants to run AWS Glue Apache Spark Jobs that use the Iceberg framework.

What combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Create a key named -conf for an AWS Glue job. Set Iceberg as a value for the --datalake-formats job parameter.

B.

Specify the path to a specific version of Iceberg by using the --extra-Jars job parameter. Set Iceberg as a value for the ~ datalake-formats job parameter.

C.

Set Iceberg as a value for the -datalake-formats job parameter.

D.

Set the -enable-auto-scaling parameter to true.

E.

Add the -job-bookmark-option: job-bookmark-enable parameter to an AWS Glue job.

Buy Now
Questions 52

A company stores customer data in an Amazon S3 bucket. The company must permanently delete all customer data that is older than 7 years.

Options:

A.

Configure an S3 Lifecycle policy to permanently delete objects that are older than 7 years.

B.

Use Amazon Athena to query the S3 bucket for objects that are older than 7 years. Configure Athena to delete the results.

C.

Configure an S3 Lifecycle policy to move objects that are older than 7 years to S3 Glacier Deep Archive.

D.

Configure an S3 Lifecycle policy to enable S3 Object Lock on all objects that are older than 7 years.

Buy Now
Questions 53

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

Options:

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

Buy Now
Questions 54

A retail company stores order information in an Amazon Aurora table named Orders. The company needs to create operational reports from the Orders table with minimal latency. The Orders table contains billions of rows, and over 100,000 transactions can occur each second.

A marketing team needs to join the Orders data with an Amazon Redshift table named Campaigns in the marketing team's data warehouse. The operational Aurora database must not be affected.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use AW5 Database Migration Service (AWS DMS) Serverless to replicate the Orders table to Amazon Redshift. Create a materialized view in Amazon Redshift to join with the Campaigns table.

B.

Use the Aurora zero-ETL integration with Amazon Redshift to replicate the Orders table. Create a materialized view in Amazon Redshift to join with the Campaigns table.

C.

Use AWS Glue to replicate the Orders table to Amazon Redshift. Create a materialized view in Amazon Redshift to join with the Campaigns table.

D.

Use federated queries to query the Orders table directly from Aurora. Create a materialized view in Amazon Redshift to join with the Campaigns table.

Buy Now
Questions 55

A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joins across multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create an AWS Glue job that selects the data directly from the view and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

B.

Schedule SQL Server Agent to run a daily SQL query that selects the desired data elements from the EC2 instance-based SQL Server databases. Configure the query to direct the output .csv objects to an S3 bucket. Create an S3 event that invokes an AWS Lambda function to transform the output format from .csv to Parquet.

C.

Use a SQL query to create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create and run an AWS Glue crawler to read the view. Create an AWS Glue job that retrieves the data and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

D.

Create an AWS Lambda function that queries the EC2 instance-based databases by using Java Database Connectivity (JDBC). Configure the Lambda function to retrieve the required data, transform the data into Parquet format, and transfer the data into an S3 bucket. Use Amazon EventBridge to schedule the Lambda function to run every day.

Buy Now
Questions 56

A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.

The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.

Which solution will MOST reduce the data processing time?

Options:

A.

Use AWS Lambda to group the raw input files into larger files. Write the larger files back to Amazon S3. Use AWS Glue to process the files. Load the files into the Amazon Redshift tables.

B.

Use the AWS Glue dynamic frame file-grouping option to ingest the raw input files. Process the files. Load the files into the Amazon Redshift tables.

C.

Use the Amazon Redshift COPY command to move the raw input files from Amazon S3 directly into the Amazon Redshift tables. Process the files in Amazon Redshift.

D.

Use Amazon EMR instead of AWS Glue to group the raw input files. Process the files in Amazon EMR. Load the files into the Amazon Redshift tables.

Buy Now
Questions 57

A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.

The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.

Which solution will meet these requirements?

Options:

A.

Keep using the EVEN distribution style for all tables. Specify primary and foreign keys for all tables.

B.

Use the ALL distribution style for large tables. Specify primary and foreign keys for all tables.

C.

Use the ALL distribution style for rarely updated small tables. Specify primary and foreign keys for all tables.

D.

Specify a combination of distribution, sort, and partition keys for all tables.

Buy Now
Questions 58

A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.

Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.

Which combination of troubleshooting steps should the data engineer take? (Select TWO.)

Options:

A.

Confirm that Athena is pointing to the correct Amazon S3 location.

B.

Increase the query timeout duration.

C.

Use the MSCK REPAIR TABLE command.

D.

Restart Athena.

E.

Delete and recreate the problematic Athena table.

Buy Now
Questions 59

A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.

The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.

Which AWS service should the company use to meet these requirements?

Options:

A.

AWS Lambda

B.

AWS Database Migration Service (AWS DMS)

C.

AWS Direct Connect

D.

AWS DataSync

Buy Now
Questions 60

A data engineer needs to use AWS Step Functions to design an orchestration workflow. The workflow must parallel process a large collection of data files and apply a specific transformation to each file.

Which Step Functions state should the data engineer use to meet these requirements?

Options:

A.

Parallel state

B.

Choice state

C.

Map state

D.

Wait state

Buy Now
Questions 61

A company has as JSON file that contains personally identifiable information (PIT) data and non-PII data. The company needs to make the data available for querying and analysis. The non-PII data must be available to everyone in the company. The PII data must be available only to a limited group of employees. Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Store the JSON file in an Amazon S3 bucket. Configure AWS Glue to split the file into one file that contains the PII data and one file that contains the non-PII data. Store the output files in separate S3 buckets. Grant the required access to the buckets based on the type of user.

B.

Store the JSON file in an Amazon S3 bucket. Use Amazon Macie to identify PII data and to grant access based on the type of user.

C.

Store the JSON file in an Amazon S3 bucket. Catalog the file schema in AWS Lake Formation. Use Lake Formation permissions to provide access to the required data based on the type of user.

D.

Create two Amazon RDS PostgreSQL databases. Load the PII data and the non-PII data into the separate databases. Grant access to the databases based on the type of user.

Buy Now
Questions 62

A company uses Amazon S3 to store data and Amazon QuickSight to create visualizations.

The company has an S3 bucket in an AWS account named Hub-Account. The S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The company's QuickSight instance is in a separate account named BI-Account

The company updates the S3 bucket policy to grant access to the QuickSight service role. The company wants to enable cross-account access to allow QuickSight to interact with the S3 bucket.

Which combination of steps will meet this requirement? (Select TWO.)

Options:

A.

Use the existing AWS KMS key to encrypt connections from QuickSight to the S3 bucket.

B.

Add the 53 bucket as a resource that the QuickSight service role can access.

C.

Use AWS Resource Access Manager (AWS RAM) to share the S3 bucket with the Bl-Account account.

D.

Add an IAM policy to the QuickSight service role to give QuickSight access to the KMS key that encrypts the S3 bucket.

E.

Add the KMS key as a resource that the QuickSight service role can access.

Buy Now
Questions 63

A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Kinesis Data Streams to stage data in Amazon S3. Use the COPY command to load data from Amazon S3 directly into Amazon Redshift to make the data immediately available for real-time analysis.

B.

Access the data from Kinesis Data Streams by using SQL queries. Create materialized views directly on top of the stream. Refresh the materialized views regularly to query the most recent stream data.

C.

Create an external schema in Amazon Redshift to map the data from Kinesis Data Streams to an Amazon Redshift object. Create a materialized view to read data from the stream. Set the materialized view to auto refresh.

D.

Connect Kinesis Data Streams to Amazon Kinesis Data Firehose. Use Kinesis Data Firehose to stage the data in Amazon S3. Use the COPY command to load the data from Amazon S3 to a table in Amazon Redshift.

Buy Now
Questions 64

A company needs to partition the Amazon S3 storage that the company uses for a data lake. The partitioning will use a path of the S3 object keys in the following format: s3://bucket/prefix/year=2023/month=01/day=01.

A data engineer must ensure that the AWS Glue Data Catalog synchronizes with the S3 storage when the company adds new partitions to the bucket.

Which solution will meet these requirements with the LEAST latency?

Options:

A.

Schedule an AWS Glue crawler to run every morning.

B.

Manually run the AWS Glue CreatePartition API twice each day.

C.

Use code that writes data to Amazon S3 to invoke the Boto3 AWS Glue create partition API call.

D.

Run the MSCK REPAIR TABLE command from the AWS Glue console.

Buy Now
Questions 65

A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.

B.

Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.

C.

Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.

D.

Use scripts to scan data elements and to assign data classifications based on the format of the data.

Buy Now
Exam Code: Data-Engineer-Associate
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Dec 23, 2025
Questions: 218
$57.75  $164.99
$43.75  $124.99
$36.75  $104.99
buy now Data-Engineer-Associate